Temporally Coherent GAN SIGGRAPH project.

Related tags

Deep LearningTecoGAN
Overview

TecoGAN

This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution. Authors: Mengyu Chu, You Xie, Laura Leal-Taixe, Nils Thuerey. Technical University of Munich.

This repository so far contains the code for the TecoGAN inference and training, and downloading the training data. Pre-trained models are also available below, you can find links for downloading and instructions below. This work was published in the ACM Transactions on Graphics as "Learning Temporal Coherence via Self-Supervision for GAN-based Video Generation (TecoGAN)", https://doi.org/10.1145/3386569.3392457. The video and pre-print can be found here:

Video: https://www.youtube.com/watch?v=pZXFXtfd-Ak Preprint: https://arxiv.org/pdf/1811.09393.pdf Supplemental results: https://ge.in.tum.de/wp-content/uploads/2020/05/ClickMe.html

TecoGAN teaser image

Additional Generated Outputs

Our method generates fine details that persist over the course of long generated video sequences. E.g., the mesh structures of the armor, the scale patterns of the lizard, and the dots on the back of the spider highlight the capabilities of our method. Our spatio-temporal discriminator plays a key role to guide the generator network towards producing coherent detail.

Lizard

Armor

Spider

Running the TecoGAN Model

Below you can find a quick start guide for running a trained TecoGAN model. For further explanations of the parameters take a look at the runGan.py file.
Note: evaluation (test case 2) currently requires an Nvidia GPU with CUDA. tkinter is also required and may be installed via the python3-tk package.

# Install tensorflow1.8+,
pip3 install --ignore-installed --upgrade tensorflow-gpu # or tensorflow
# Install PyTorch (only necessary for the metric evaluations) and other things...
pip3 install -r requirements.txt

# Download our TecoGAN model, the _Vid4_ and _TOS_ scenes shown in our paper and video.
python3 runGan.py 0

# Run the inference mode on the calendar scene.
# You can take a look of the parameter explanations in the runGan.py, feel free to try other scenes!
python3 runGan.py 1 

# Evaluate the results with 4 metrics, PSNR, LPIPS[1], and our temporal metrics tOF and tLP with pytorch.
# Take a look at the paper for more details! 
python3 runGan.py 2

Train the TecoGAN Model

1. Prepare the Training Data

The training and validation dataset can be downloaded with the following commands into a chosen directory TrainingDataPath. Note: online video downloading requires youtube-dl.

# Install youtube-dl for online video downloading
pip install --user --upgrade youtube-dl

# take a look of the parameters first:
python3 dataPrepare.py --help

# To be on the safe side, if you just want to see what will happen, the following line won't download anything,
# and will only save information into log file.
# TrainingDataPath is still important, it the directory where logs are saved: TrainingDataPath/log/logfile_mmddHHMM.txt
python3 dataPrepare.py --start_id 2000 --duration 120 --disk_path TrainingDataPath --TEST

# This will create 308 subfolders under TrainingDataPath, each with 120 frames, from 28 online videos.
# It takes a long time.
python3 dataPrepare.py --start_id 2000 --duration 120 --REMOVE --disk_path TrainingDataPath

Once ready, please update the parameter TrainingDataPath in runGAN.py (for case 3 and case 4), and then you can start training with the downloaded data!

Note: most of the data (272 out of 308 sequences) are the same as the ones we used for the published models, but some (36 out of 308) are not online anymore. Hence the script downloads suitable replacements.

2. Train the Model

This section gives command to train a new TecoGAN model. Detail and additional parameters can be found in the runGan.py file. Note: the tensorboard gif summary requires ffmpeg.

# Install ffmpeg for the  gif summary
sudo apt-get install ffmpeg # or conda install ffmpeg

# Train the TecoGAN model, based on our FRVSR model
# Please check and update the following parameters: 
# - VGGPath, it uses ./model/ by default. The VGG model is ca. 500MB
# - TrainingDataPath (see above)
# - in main.py you can also adjust the output directory of the  testWhileTrain() function if you like (it will write into a train/ sub directory by default)
python3 runGan.py 3

# Train without Dst, (i.e. a FRVSR model)
python3 runGan.py 4

# View log via tensorboard
tensorboard --logdir='ex_TecoGANmm-dd-hh/log' --port=8008

Tensorboard GIF Summary Example

gif_summary_example

Acknowledgements

This work was funded by the ERC Starting Grant realFlow (ERC StG-2015-637014).
Part of the code is based on LPIPS[1], Photo-Realistic SISR[2] and gif_summary[3].

Reference

[1] The Unreasonable Effectiveness of Deep Features as a Perceptual Metric (LPIPS)
[2] Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
[3] gif_summary

TUM I15 https://ge.in.tum.de/ , TUM https://www.tum.de/

Owner
Duc Linh Nguyen
Have passion in programming, using JS, Python, Ruby, Assembly, Perl, Java, Golang, C++, C#/.NET languages .
Duc Linh Nguyen
Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning

Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning Yansong Tang *, Zhenyu Jiang *, Zhenda Xie *, Yue

Zhenyu Jiang 12 Nov 16, 2022
Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.

REDQ source code Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05

109 Dec 16, 2022
Deep Learning GPU Training System

DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To

NVIDIA Corporation 4.1k Jan 03, 2023
Conditional Generative Adversarial Networks (CGAN) for Mobility Data Fusion

This code implements the paper, Kim et al. (2021). Imputing Qualitative Attributes for Trip Chains Extracted from Smart Card Data Using a Conditional Generative Adversarial Network. Transportation Re

Eui-Jin Kim 2 Feb 03, 2022
An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).

MixHop and N-GCN ⠀ A PyTorch implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019)

Benedek Rozemberczki 393 Dec 13, 2022
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

1 Jan 23, 2022
Unofficial implementation (replicates paper results!) of MINER: Multiscale Implicit Neural Representations in pytorch-lightning

MINER_pl Unofficial implementation of MINER: Multiscale Implicit Neural Representations in pytorch-lightning. 📖 Ref readings Laplacian pyramid explan

AI葵 51 Nov 28, 2022
Learning to Simulate Dynamic Environments with GameGAN (CVPR 2020)

Learning to Simulate Dynamic Environments with GameGAN PyTorch code for GameGAN Learning to Simulate Dynamic Environments with GameGAN Seung Wook Kim,

199 Dec 26, 2022
CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection

CLOCs is a novel Camera-LiDAR Object Candidates fusion network. It provides a low-complexity multi-modal fusion framework that improves the performance of single-modality detectors. CLOCs operates on

Su Pang 254 Dec 16, 2022
なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモ

FaceDetection-Anti-Spoof-Demo なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモです。 モデルはPINTO_model_zoo/191_anti-spoof-mn3からONNX形式のモデルを使用しています。 Requirement mediapipe

KazuhitoTakahashi 8 Nov 18, 2022
Deep learning operations reinvented (for pytorch, tensorflow, jax and others)

This video in better quality. einops Flexible and powerful tensor operations for readable and reliable code. Supports numpy, pytorch, tensorflow, and

Alex Rogozhnikov 6.2k Jan 01, 2023
Keras documentation, hosted live at keras.io

Keras.io documentation generator This repository hosts the code used to generate the keras.io website. Generating a local copy of the website pip inst

Keras 2k Jan 08, 2023
The implementation of 'Image synthesis via semantic composition'.

Image synthesis via semantic synthesis [Project Page] by Yi Wang, Lu Qi, Ying-Cong Chen, Xiangyu Zhang, Jiaya Jia. Introduction This repository gives

DV Lab 71 Jan 06, 2023
Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Neural Networks.

Dynamic-Graphs-Construction Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Ne

11 Dec 14, 2022
GAN-based Matrix Factorization for Recommender Systems

GAN-based Matrix Factorization for Recommender Systems This repository contains the datasets' splits, the source code of the experiments and their res

Ervin Dervishaj 9 Nov 06, 2022
A community run, 5-day PyTorch Deep Learning Bootcamp

Deep Learning Winter School, November 2107. Tel Aviv Deep Learning Bootcamp : http://deep-ml.com. About Tel-Aviv Deep Learning Bootcamp is an intensiv

Shlomo Kashani. 1.3k Sep 04, 2021
Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechanism

Period-alternatives-of-Softmax Experimental Demo for our paper 'Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechani

slwang9353 0 Sep 06, 2021
Fine-grained Control of Image Caption Generation with Abstract Scene Graphs

Faster R-CNN pretrained on VisualGenome This repository modifies maskrcnn-benchmark for object detection and attribute prediction on VisualGenome data

Shizhe Chen 7 Apr 20, 2021
This is the official implementation for the paper "Heterogeneous Multi-player Multi-armed Bandits: Closing the Gap and Generalization" in NeurIPS 2021.

MPMAB_BEACON This is code used for the paper "Decentralized Multi-player Multi-armed Bandits: Beyond Linear Reward Functions", Neurips 2021. Requireme

Cong Shen Research Group 0 Oct 26, 2021
Pytorch implementation of VAEs for heterogeneous likelihoods.

Heterogeneous VAEs Beware: This repository is under construction 🛠️ Pytorch implementation of different VAE models to model heterogeneous data. Here,

Adrián Javaloy 35 Nov 29, 2022