source code of “Visual Saliency Transformer” (ICCV2021)

Related tags

Deep LearningVST
Overview

Visual Saliency Transformer (VST)

source code for our ICCV 2021 paper “Visual Saliency Transformer” by Nian Liu, Ni Zhang, Kaiyuan Wan, Junwei Han, and Ling Shao.

created by Ni Zhang, email: [email protected]

avatar

Requirement

  1. Pytorch 1.6.0
  2. Torchvison 0.7.0

RGB VST for RGB Salient Object Detection

Data Preparation

Training Set

We use the training set of DUTS to train our VST for RGB SOD. Besides, we follow Egnet to generate contour maps of DUTS trainset for training. You can directly download the generated contour maps DUTS-TR-Contour from [baidu pan fetch code: ow76 | Google drive] and put it into RGB_VST/Data folder.

Testing Set

We use the testing set of DUTS, ECSSD, HKU-IS, PASCAL-S, DUT-O, and SOD to test our VST. After Downloading, put them into RGB_VST/Data folder.

Your RGB_VST/Data folder should look like this:

-- Data
   |-- DUTS
   |   |-- DUTS-TR
   |   |-- | DUTS-TR-Image
   |   |-- | DUTS-TR-Mask
   |   |-- | DUTS-TR-Contour
   |   |-- DUTS-TE
   |   |-- | DUTS-TE-Image
   |   |-- | DUTS-TE-Mask
   |-- ECSSD
   |   |--images
   |   |--GT
   ...

Training, Testing, and Evaluation

  1. cd RGB_VST
  2. Download the pretrained T2T-ViT_t-14 model [baidu pan fetch code: 2u34 | Google drive] and put it into pretrained_model/ folder.
  3. Run python train_test_eval.py --Training True --Testing True --Evaluation True for training, testing, and evaluation. The predictions will be in preds/ folder and the evaluation results will be in result.txt file.

Testing on Our Pretrained RGB VST Model

  1. cd RGB_VST
  2. Download our pretrained RGB_VST.pth[baidu pan fetch code: pe54 | Google drive] and then put it in checkpoint/ folder.
  3. Run python train_test_eval.py --Testing True --Evaluation True for testing and evaluation. The predictions will be in preds/ folder and the evaluation results will be in result.txt file.

Our saliency maps can be downloaded from [baidu pan fetch code: 92t0 | Google drive].

SOTA Saliency Maps for Comparison

The saliency maps of the state-of-the-art methods in our paper can be downloaded from [baidu pan fetch code: de4k | Google drive].

RGB-D VST for RGB-D Salient Object Detection

Data Preparation

Training Set

We use 1,485 images from NJUD, 700 images from NLPR, and 800 images from DUTLF-Depth to train our VST for RGB-D SOD. Besides, we follow Egnet to generate corresponding contour maps for training. You can directly download the whole training set from here [baidu pan fetch code: 7vsw | Google drive] and put it into RGBD_VST/Data folder.

Testing Set

NJUD [baidu pan fetch code: 7mrn | Google drive]
NLPR [baidu pan fetch code: tqqm | Google drive]
DUTLF-Depth [baidu pan fetch code: 9jac | Google drive]
STERE [baidu pan fetch code: 93hl | Google drive]
LFSD [baidu pan fetch code: l2g4 | Google drive]
RGBD135 [baidu pan fetch code: apzb | Google drive]
SSD [baidu pan fetch code: j3v0 | Google drive]
SIP [baidu pan fetch code: q0j5 | Google drive]
ReDWeb-S

After Downloading, put them into RGBD_VST/Data folder.

Your RGBD_VST/Data folder should look like this:

-- Data
   |-- NJUD
   |   |-- trainset
   |   |-- | RGB
   |   |-- | depth
   |   |-- | GT
   |   |-- | contour
   |   |-- testset
   |   |-- | RGB
   |   |-- | depth
   |   |-- | GT
   |-- STERE
   |   |-- RGB
   |   |-- depth
   |   |-- GT
   ...

Training, Testing, and Evaluation

  1. cd RGBD_VST
  2. Download the pretrained T2T-ViT_t-14 model [baidu pan fetch code: 2u34 | Google drive] and put it into pretrained_model/ folder.
  3. Run python train_test_eval.py --Training True --Testing True --Evaluation True for training, testing, and evaluation. The predictions will be in preds/ folder and the evaluation results will be in result.txt file.

Testing on Our Pretrained RGB-D VST Model

  1. cd RGBD_VST
  2. Download our pretrained RGBD_VST.pth[baidu pan fetch code: zt0v | Google drive] and then put it in checkpoint/ folder.
  3. Run python train_test_eval.py --Testing True --Evaluation True for testing and evaluation. The predictions will be in preds/ folder and the evaluation results will be in result.txt file.

Our saliency maps can be downloaded from [baidu pan fetch code: jovk | Google drive].

SOTA Saliency Maps for Comparison

The saliency maps of the state-of-the-art methods in our paper can be downloaded from [baidu pan fetch code: i1we | Google drive].

Acknowledgement

We thank the authors of Egnet for providing codes of generating contour maps. We also thank Zhao Zhang for providing the efficient evaluation tool.

Citation

If you think our work is helpful, please cite

@inproceedings{liu2021VST, 
  title={Visual Saliency Transformer}, 
  author={Liu, Nian and Zhang, Ni and Han, Junwei and Shao, Ling},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  year={2021}
}
Owner
Ni Zhang PhD student
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
Real time sign language recognition

The proposed work aims at converting american sign language gestures into English that can be understood by everyone in real time.

Mohit Kaushik 6 Jun 13, 2022
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergen

281 Dec 30, 2022
An implementation of RetinaNet in PyTorch.

RetinaNet An implementation of RetinaNet in PyTorch. Installation Training COCO 2017 Pascal VOC Custom Dataset Evaluation Todo Credits Installation In

Conner Vercellino 297 Jan 04, 2023
Implementation of the GBST block from the Charformer paper, in Pytorch

Charformer - Pytorch Implementation of the GBST (gradient-based subword tokenization) module from the Charformer paper, in Pytorch. The paper proposes

Phil Wang 105 Dec 26, 2022
Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Guillermo Cámbara 26 Dec 13, 2022
3D HourGlass Networks for Human Pose Estimation Through Videos

3D-HourGlass-Network 3D CNN Based Hourglass Network for Human Pose Estimation (3D Human Pose) from videos. This was my summer'18 research project. Dis

Naman Jain 51 Jan 02, 2023
A Quick and Dirty Progressive Neural Network written in TensorFlow.

prog_nn .▄▄ · ▄· ▄▌ ▐ ▄ ▄▄▄· ▐ ▄ ▐█ ▀. ▐█▪██▌•█▌▐█▐█ ▄█▪ •█▌▐█ ▄▀▀▀█▄▐█▌▐█▪▐█▐▐▌ ██▀

SynPon 53 Dec 12, 2022
Install alphafold on the local machine, get out of docker.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

Kui Xu 73 Dec 13, 2022
This repo contains implementation of different architectures for emotion recognition in conversations.

Emotion Recognition in Conversations Updates 🔥 🔥 🔥 Date Announcements 03/08/2021 🎆 🎆 We have released a new dataset M2H2: A Multimodal Multiparty

Deep Cognition and Language Research (DeCLaRe) Lab 1k Dec 30, 2022
Survival analysis in Python

What is survival analysis and why should I learn it? Survival analysis was originally developed and applied heavily by the actuarial and medical commu

Cameron Davidson-Pilon 2k Jan 08, 2023
PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment

logit-adj-pytorch PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment This code implements the paper: Long-tail Learning via

Chamuditha Jayanga 53 Dec 23, 2022
Proof-Of-Concept Piano-Drums Music AI Model/Implementation

Rock Piano "When all is one and one is all, that's what it is to be a rock and not to roll." ---Led Zeppelin, "Stairway To Heaven" Proof-Of-Concept Pi

Alex 4 Nov 28, 2021
IDA file loader for UF2, created for the DEFCON 29 hardware badge

UF2 Loader for IDA The DEFCON 29 badge uses the UF2 bootloader, which conveniently allows you to dump and flash the firmware over USB as a mass storag

Kevin Colley 6 Feb 08, 2022
An LSTM based GAN for Human motion synthesis

GAN-motion-Prediction An LSTM based GAN for motion synthesis has a few issues reading H3.6M data from A.Jain et al , will fix soon. Prediction of the

Amogh Adishesha 9 Jun 17, 2022
Expert Finding in Legal Community Question Answering

Expert Finding in Legal Community Question Answering Arian Askari, Suzan Verberne, and Gabriella Pasi. Expert Finding in Legal Community Question Answ

Arian Askari 3 Oct 31, 2022
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization

Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization Code for reproducing our results in the Head2Toe paper. Paper: arxiv.or

Google Research 62 Dec 12, 2022
OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion.

OstrichRL This is the repository accompanying the paper OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion. It contain

Vittorio La Barbera 51 Nov 17, 2022