source code of “Visual Saliency Transformer” (ICCV2021)

Related tags

Deep LearningVST
Overview

Visual Saliency Transformer (VST)

source code for our ICCV 2021 paper “Visual Saliency Transformer” by Nian Liu, Ni Zhang, Kaiyuan Wan, Junwei Han, and Ling Shao.

created by Ni Zhang, email: [email protected]

avatar

Requirement

  1. Pytorch 1.6.0
  2. Torchvison 0.7.0

RGB VST for RGB Salient Object Detection

Data Preparation

Training Set

We use the training set of DUTS to train our VST for RGB SOD. Besides, we follow Egnet to generate contour maps of DUTS trainset for training. You can directly download the generated contour maps DUTS-TR-Contour from [baidu pan fetch code: ow76 | Google drive] and put it into RGB_VST/Data folder.

Testing Set

We use the testing set of DUTS, ECSSD, HKU-IS, PASCAL-S, DUT-O, and SOD to test our VST. After Downloading, put them into RGB_VST/Data folder.

Your RGB_VST/Data folder should look like this:

-- Data
   |-- DUTS
   |   |-- DUTS-TR
   |   |-- | DUTS-TR-Image
   |   |-- | DUTS-TR-Mask
   |   |-- | DUTS-TR-Contour
   |   |-- DUTS-TE
   |   |-- | DUTS-TE-Image
   |   |-- | DUTS-TE-Mask
   |-- ECSSD
   |   |--images
   |   |--GT
   ...

Training, Testing, and Evaluation

  1. cd RGB_VST
  2. Download the pretrained T2T-ViT_t-14 model [baidu pan fetch code: 2u34 | Google drive] and put it into pretrained_model/ folder.
  3. Run python train_test_eval.py --Training True --Testing True --Evaluation True for training, testing, and evaluation. The predictions will be in preds/ folder and the evaluation results will be in result.txt file.

Testing on Our Pretrained RGB VST Model

  1. cd RGB_VST
  2. Download our pretrained RGB_VST.pth[baidu pan fetch code: pe54 | Google drive] and then put it in checkpoint/ folder.
  3. Run python train_test_eval.py --Testing True --Evaluation True for testing and evaluation. The predictions will be in preds/ folder and the evaluation results will be in result.txt file.

Our saliency maps can be downloaded from [baidu pan fetch code: 92t0 | Google drive].

SOTA Saliency Maps for Comparison

The saliency maps of the state-of-the-art methods in our paper can be downloaded from [baidu pan fetch code: de4k | Google drive].

RGB-D VST for RGB-D Salient Object Detection

Data Preparation

Training Set

We use 1,485 images from NJUD, 700 images from NLPR, and 800 images from DUTLF-Depth to train our VST for RGB-D SOD. Besides, we follow Egnet to generate corresponding contour maps for training. You can directly download the whole training set from here [baidu pan fetch code: 7vsw | Google drive] and put it into RGBD_VST/Data folder.

Testing Set

NJUD [baidu pan fetch code: 7mrn | Google drive]
NLPR [baidu pan fetch code: tqqm | Google drive]
DUTLF-Depth [baidu pan fetch code: 9jac | Google drive]
STERE [baidu pan fetch code: 93hl | Google drive]
LFSD [baidu pan fetch code: l2g4 | Google drive]
RGBD135 [baidu pan fetch code: apzb | Google drive]
SSD [baidu pan fetch code: j3v0 | Google drive]
SIP [baidu pan fetch code: q0j5 | Google drive]
ReDWeb-S

After Downloading, put them into RGBD_VST/Data folder.

Your RGBD_VST/Data folder should look like this:

-- Data
   |-- NJUD
   |   |-- trainset
   |   |-- | RGB
   |   |-- | depth
   |   |-- | GT
   |   |-- | contour
   |   |-- testset
   |   |-- | RGB
   |   |-- | depth
   |   |-- | GT
   |-- STERE
   |   |-- RGB
   |   |-- depth
   |   |-- GT
   ...

Training, Testing, and Evaluation

  1. cd RGBD_VST
  2. Download the pretrained T2T-ViT_t-14 model [baidu pan fetch code: 2u34 | Google drive] and put it into pretrained_model/ folder.
  3. Run python train_test_eval.py --Training True --Testing True --Evaluation True for training, testing, and evaluation. The predictions will be in preds/ folder and the evaluation results will be in result.txt file.

Testing on Our Pretrained RGB-D VST Model

  1. cd RGBD_VST
  2. Download our pretrained RGBD_VST.pth[baidu pan fetch code: zt0v | Google drive] and then put it in checkpoint/ folder.
  3. Run python train_test_eval.py --Testing True --Evaluation True for testing and evaluation. The predictions will be in preds/ folder and the evaluation results will be in result.txt file.

Our saliency maps can be downloaded from [baidu pan fetch code: jovk | Google drive].

SOTA Saliency Maps for Comparison

The saliency maps of the state-of-the-art methods in our paper can be downloaded from [baidu pan fetch code: i1we | Google drive].

Acknowledgement

We thank the authors of Egnet for providing codes of generating contour maps. We also thank Zhao Zhang for providing the efficient evaluation tool.

Citation

If you think our work is helpful, please cite

@inproceedings{liu2021VST, 
  title={Visual Saliency Transformer}, 
  author={Liu, Nian and Zhang, Ni and Han, Junwei and Shao, Ling},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  year={2021}
}
Owner
Ni Zhang PhD student
Code for intrusion detection system (IDS) development using CNN models and transfer learning

Intrusion-Detection-System-Using-CNN-and-Transfer-Learning This is the code for the paper entitled "A Transfer Learning and Optimized CNN Based Intrus

Western OC2 Lab 38 Dec 12, 2022
HandTailor: Towards High-Precision Monocular 3D Hand Recovery

HandTailor This repository is the implementation code and model of the paper "HandTailor: Towards High-Precision Monocular 3D Hand Recovery" (arXiv) G

Lv Jun 113 Jan 06, 2023
A project that uses optical flow and machine learning to detect aimhacking in video clips.

waldo-anticheat A project that aims to use optical flow and machine learning to visually detect cheating or hacking in video clips from fps games. Che

waldo.vision 542 Dec 03, 2022
BERT model training impelmentation using 1024 A100 GPUs for MLPerf Training v1.1

Pre-trained checkpoint and bert config json file Location of checkpoint and bert config json file This MLCommons members Google Drive location contain

SAIT (Samsung Advanced Institute of Technology) 12 Apr 27, 2022
Unofficial implementation of MUSIQ (Multi-Scale Image Quality Transformer)

MUSIQ: Multi-Scale Image Quality Transformer Unofficial pytorch implementation of the paper "MUSIQ: Multi-Scale Image Quality Transformer" (paper link

41 Jan 02, 2023
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

Facebook Research 753 Dec 23, 2022
Single cell current best practices tutorial case study for the paper:Luecken and Theis, "Current best practices in single-cell RNA-seq analysis: a tutorial"

Scripts for "Current best-practices in single-cell RNA-seq: a tutorial" This repository is complementary to the publication: M.D. Luecken, F.J. Theis,

Theis Lab 968 Dec 28, 2022
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators [Project Website] [Replicate.ai Project] StyleGAN-NADA: CLIP-Guided Domain Adaptation

992 Dec 30, 2022
ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

ActNN : Activation Compressed Training This is the official project repository for ActNN: Reducing Training Memory Footprint via 2-Bit Activation Comp

UC Berkeley RISE 178 Jan 05, 2023
(CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic

ClassSR (CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic Paper Authors: Xiangtao Kong, Hengyuan

Xiangtao Kong 308 Jan 05, 2023
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
Generic image compressor for machine learning. Pytorch code for our paper "Lossy compression for lossless prediction".

Lossy Compression for Lossless Prediction Using: Training: This repostiory contains our implementation of the paper: Lossy Compression for Lossless Pr

Yann Dubois 84 Jan 02, 2023
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of

Dwango Media Village 140 Dec 07, 2022
Implementation of association rules mining algorithms (Apriori|FPGrowth) using python.

Association Rules Mining Using Python Implementation of association rules mining algorithms (Apriori|FPGrowth) using python. As a part of hw1 code in

Pre 2 Nov 10, 2021
Animate molecular orbital transitions using Psi4 and Blender

Molecular Orbital Transitions (MOT) Animate molecular orbital transitions using Psi4 and Blender Author: Maximilian Paradiz Dominguez, University of A

3 Feb 01, 2022
This repository contains the code for "Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP".

Self-Diagnosis and Self-Debiasing This repository contains the source code for Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based

Timo Schick 62 Dec 12, 2022
Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are implemented and can be seen in tensorboard.

Sarus published models Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are

Sarus Technologies 39 Aug 19, 2022
Task-based end-to-end model learning in stochastic optimization

Task-based End-to-end Model Learning in Stochastic Optimization This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains th

CMU Locus Lab 164 Dec 29, 2022
Histology images query (unsupervised)

110-1-NTU-DBME5028-Histology-images-query Final Project: Histology images query (unsupervised) Kaggle: https://www.kaggle.com/c/histology-images-query

1 Jan 05, 2022
[ICLR2021oral] Rethinking Architecture Selection in Differentiable NAS

DARTS-PT Code accompanying the paper ICLR'2021: Rethinking Architecture Selection in Differentiable NAS Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi

Ruochen Wang 86 Dec 27, 2022