source code of “Visual Saliency Transformer” (ICCV2021)

Related tags

Deep LearningVST
Overview

Visual Saliency Transformer (VST)

source code for our ICCV 2021 paper “Visual Saliency Transformer” by Nian Liu, Ni Zhang, Kaiyuan Wan, Junwei Han, and Ling Shao.

created by Ni Zhang, email: [email protected]

avatar

Requirement

  1. Pytorch 1.6.0
  2. Torchvison 0.7.0

RGB VST for RGB Salient Object Detection

Data Preparation

Training Set

We use the training set of DUTS to train our VST for RGB SOD. Besides, we follow Egnet to generate contour maps of DUTS trainset for training. You can directly download the generated contour maps DUTS-TR-Contour from [baidu pan fetch code: ow76 | Google drive] and put it into RGB_VST/Data folder.

Testing Set

We use the testing set of DUTS, ECSSD, HKU-IS, PASCAL-S, DUT-O, and SOD to test our VST. After Downloading, put them into RGB_VST/Data folder.

Your RGB_VST/Data folder should look like this:

-- Data
   |-- DUTS
   |   |-- DUTS-TR
   |   |-- | DUTS-TR-Image
   |   |-- | DUTS-TR-Mask
   |   |-- | DUTS-TR-Contour
   |   |-- DUTS-TE
   |   |-- | DUTS-TE-Image
   |   |-- | DUTS-TE-Mask
   |-- ECSSD
   |   |--images
   |   |--GT
   ...

Training, Testing, and Evaluation

  1. cd RGB_VST
  2. Download the pretrained T2T-ViT_t-14 model [baidu pan fetch code: 2u34 | Google drive] and put it into pretrained_model/ folder.
  3. Run python train_test_eval.py --Training True --Testing True --Evaluation True for training, testing, and evaluation. The predictions will be in preds/ folder and the evaluation results will be in result.txt file.

Testing on Our Pretrained RGB VST Model

  1. cd RGB_VST
  2. Download our pretrained RGB_VST.pth[baidu pan fetch code: pe54 | Google drive] and then put it in checkpoint/ folder.
  3. Run python train_test_eval.py --Testing True --Evaluation True for testing and evaluation. The predictions will be in preds/ folder and the evaluation results will be in result.txt file.

Our saliency maps can be downloaded from [baidu pan fetch code: 92t0 | Google drive].

SOTA Saliency Maps for Comparison

The saliency maps of the state-of-the-art methods in our paper can be downloaded from [baidu pan fetch code: de4k | Google drive].

RGB-D VST for RGB-D Salient Object Detection

Data Preparation

Training Set

We use 1,485 images from NJUD, 700 images from NLPR, and 800 images from DUTLF-Depth to train our VST for RGB-D SOD. Besides, we follow Egnet to generate corresponding contour maps for training. You can directly download the whole training set from here [baidu pan fetch code: 7vsw | Google drive] and put it into RGBD_VST/Data folder.

Testing Set

NJUD [baidu pan fetch code: 7mrn | Google drive]
NLPR [baidu pan fetch code: tqqm | Google drive]
DUTLF-Depth [baidu pan fetch code: 9jac | Google drive]
STERE [baidu pan fetch code: 93hl | Google drive]
LFSD [baidu pan fetch code: l2g4 | Google drive]
RGBD135 [baidu pan fetch code: apzb | Google drive]
SSD [baidu pan fetch code: j3v0 | Google drive]
SIP [baidu pan fetch code: q0j5 | Google drive]
ReDWeb-S

After Downloading, put them into RGBD_VST/Data folder.

Your RGBD_VST/Data folder should look like this:

-- Data
   |-- NJUD
   |   |-- trainset
   |   |-- | RGB
   |   |-- | depth
   |   |-- | GT
   |   |-- | contour
   |   |-- testset
   |   |-- | RGB
   |   |-- | depth
   |   |-- | GT
   |-- STERE
   |   |-- RGB
   |   |-- depth
   |   |-- GT
   ...

Training, Testing, and Evaluation

  1. cd RGBD_VST
  2. Download the pretrained T2T-ViT_t-14 model [baidu pan fetch code: 2u34 | Google drive] and put it into pretrained_model/ folder.
  3. Run python train_test_eval.py --Training True --Testing True --Evaluation True for training, testing, and evaluation. The predictions will be in preds/ folder and the evaluation results will be in result.txt file.

Testing on Our Pretrained RGB-D VST Model

  1. cd RGBD_VST
  2. Download our pretrained RGBD_VST.pth[baidu pan fetch code: zt0v | Google drive] and then put it in checkpoint/ folder.
  3. Run python train_test_eval.py --Testing True --Evaluation True for testing and evaluation. The predictions will be in preds/ folder and the evaluation results will be in result.txt file.

Our saliency maps can be downloaded from [baidu pan fetch code: jovk | Google drive].

SOTA Saliency Maps for Comparison

The saliency maps of the state-of-the-art methods in our paper can be downloaded from [baidu pan fetch code: i1we | Google drive].

Acknowledgement

We thank the authors of Egnet for providing codes of generating contour maps. We also thank Zhao Zhang for providing the efficient evaluation tool.

Citation

If you think our work is helpful, please cite

@inproceedings{liu2021VST, 
  title={Visual Saliency Transformer}, 
  author={Liu, Nian and Zhang, Ni and Han, Junwei and Shao, Ling},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  year={2021}
}
Owner
Ni Zhang PhD student
An LSTM based GAN for Human motion synthesis

GAN-motion-Prediction An LSTM based GAN for motion synthesis has a few issues reading H3.6M data from A.Jain et al , will fix soon. Prediction of the

Amogh Adishesha 9 Jun 17, 2022
Python scripts form performing stereo depth estimation using the HITNET model in ONNX.

ONNX-HITNET-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in ONNX. Stereo depth estimation on

Ibai Gorordo 30 Nov 08, 2022
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

24 Dec 31, 2022
NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework

NLP From Scratch Without Large-Scale Pretraining This repository contains the code, pre-trained model checkpoints and curated datasets for our paper:

Xingcheng Yao 224 Dec 08, 2022
Breast Cancer Classification Model is applied on a different dataset

Breast Cancer Classification Model is applied on a different dataset

1 Feb 04, 2022
Person Re-identification

Person Re-identification Final project of Computer Vision Table of content Person Re-identification Table of content Students: Proposed method Dataset

Nguyễn Hoàng Quân 4 Jun 17, 2021
A Light CNN for Deep Face Representation with Noisy Labels

A Light CNN for Deep Face Representation with Noisy Labels Citation If you use our models, please cite the following paper: @article{wulight, title=

Alfred Xiang Wu 715 Nov 05, 2022
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Microsoft365_devicePhish Abusing Microsoft 365 OAuth Authorization Flow for Phishing Attack This is a simple proof-of-concept script that allows an at

Alex 236 Dec 21, 2022
Code and hyperparameters for the paper "Generative Adversarial Networks"

Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel

Ian Goodfellow 3.5k Jan 08, 2023
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

26 Dec 07, 2022
📚 Papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks.

papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks. Papermill lets you: parameterize notebooks execute notebooks This

nteract 5.1k Jan 03, 2023
Neural network-based build time estimation for additive manufacturing

Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim

Yosep 1 Nov 15, 2021
Evaluation framework for testing segmentation networks in PyTorch

Evaluation framework for testing segmentation networks in PyTorch. What segmentation network to choose for next Kaggle competition? This benchmark knows the answer!

Eugene Khvedchenya 37 Apr 27, 2022
SLAMP: Stochastic Latent Appearance and Motion Prediction

SLAMP: Stochastic Latent Appearance and Motion Prediction Official implementation of the paper SLAMP: Stochastic Latent Appearance and Motion Predicti

Kaan Akan 34 Dec 08, 2022
Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs.

Lunar Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs. About Lunar can be modified to work

Zeyad Mansour 276 Jan 07, 2023
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling"

Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling" Pipeline of Tip-Adapter Tip-Adapter can provid

peng gao 187 Dec 28, 2022
Research on Event Accumulator Settings for Event-Based SLAM

Research on Event Accumulator Settings for Event-Based SLAM This is the source code for paper "Research on Event Accumulator Settings for Event-Based

Robin Shaun 26 Dec 21, 2022