[CVPR 2021] Exemplar-Based Open-Set Panoptic Segmentation Network (EOPSN)

Related tags

Deep LearningEOPSN
Overview

EOPSN: Exemplar-Based Open-Set Panoptic Segmentation Network (CVPR 2021)

PyTorch implementation for EOPSN.

We propose open-set panoptic segmentation task and propose a new baseline called EOPSN. The code is based on Detectron2


Architecture

Qualitative Results

Usage

First, install requirements.

pip install -r requirements.txt

Then, install PyTorch 1.5+ and torchvision 0.6+:

conda install -c pytorch pytorch torchvision

Finally, you need to install Detectron2. To prevent version conflict, I recommand to install via included detectron2 folders. Regarding installation issue caused from detectron2, please refer to here.

cd detectron2
pip install -e ./

Data preparation

Download and extract COCO 2017 train and val images with annotations from http://cocodataset.org. We expect the directory structure to be the following:

datasets/coco
  annotations/  # annotation json files
  train2017/    # train images
  val2017/      # val images

To convert closed-set panoptic segmentation to open-set panoptic segmentation, run:

python prepare_unknown.py

The default setting is K=20, you can change here.

Training

To train EOPSN on a single node with 8 gpus for 30,000 iterations run:

python train_net.py --config configs/EOPSN_K20.yaml --num-gpus 8

Note that it requires pre-trained models (Void-suppression). Please download from Goolge Drive.

To train baseline (train) on a single node with 8 gpus for 45,000 iterations run:

python train_net.py --config configs/baseline_K20.yaml --num-gpus 8

If you want to log using WandB, you can add --wandb flag.

Evaluation

To evaluate EOPSN on COCO val5k with a single GPU run:

python train_net.py --config configs/EOPSN_K20.yaml --num-gpus 8 --resume --eval-only

Quantitative Results

Citations

@inproceedings{hwang2021exemplar,
    author = {Hwang, Jaedong and Oh, Seoung Wug and Lee, Joon-Young and Han, Bohyung},
    title = {Exemplar-Based Open-Set Panoptic Segmentation Network},
    booktitle = {CVPR},
    year = {2021},
}   

License

EOPSN is released under the CC BY-NC-SA 4.0 license. Please see the LICENSE file for more information. The detectron2 part is released under the Apache 2.0 license. Please see the detectron2/LICENSE file for more information.

Contributing

We actively welcome your pull requests!

Owner
Jaedong Hwang
graduate student @ Seoul National University, Korea
Jaedong Hwang
Fake News Detection Using Machine Learning Methods

Fake-News-Detection-Using-Machine-Learning-Methods Fake news is always a real and dangerous issue. However, with the presence and abundance of various

Achraf Safsafi 1 Jan 11, 2022
WatermarkRemoval-WDNet-WACV2021

WatermarkRemoval-WDNet-WACV2021 Thank you for your attention. Citation Please cite the related works in your publications if it helps your research: @

LUYI 63 Dec 05, 2022
A curated list of awesome projects and resources related fastai

A curated list of awesome projects and resources related fastai

Tanishq Abraham 138 Dec 22, 2022
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
Running AlphaFold2 (from ColabFold) in Azure Machine Learning

Running AlphaFold2 (from ColabFold) in Azure Machine Learning Colby T. Ford, Ph.D. Companion repository for Medium Post: How to predict many protein s

Colby T. Ford 3 Feb 18, 2022
[ACL 2022] LinkBERT: A Knowledgeable Language Model 😎 Pretrained with Document Links

LinkBERT: A Knowledgeable Language Model Pretrained with Document Links This repo provides the model, code & data of our paper: LinkBERT: Pretraining

Michihiro Yasunaga 264 Jan 01, 2023
A PyTorch-based library for semi-supervised learning

News If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]<

1k Jan 06, 2023
PyTorch code for training MM-DistillNet for multimodal knowledge distillation

There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge MM-DistillNet is a

51 Dec 20, 2022
Official Implementation for Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation

Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation We present a generic image-to-image translation framework, pixel2style2pixel (pSp

2.8k Dec 30, 2022
Galaxy images labelled by morphology (shape). Aimed at ML development and teaching

Galaxy images labelled by morphology (shape). Aimed at ML debugging and teaching.

Mike Walmsley 14 Nov 28, 2022
Bunch of different tools which helps visualizing and annotating images for semantic/instance segmentation tasks

Data Framework for Semantic/Instance Segmentation Bunch of different tools which helps visualizing, transforming and annotating images for semantic/in

Bruno Fernandes Carvalho 5 Dec 21, 2022
The PyTorch implementation for paper "Neural Texture Extraction and Distribution for Controllable Person Image Synthesis" (CVPR2022 Oral)

ArXiv | Get Start Neural-Texture-Extraction-Distribution The PyTorch implementation for our paper "Neural Texture Extraction and Distribution for Cont

Ren Yurui 111 Dec 10, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021)

PGpoints Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021) Hyeontae Son, Young Min Kim Pre

Hyeontae Son 9 Jun 06, 2022
Adaptive Attention Span for Reinforcement Learning

Adaptive Transformers in RL Official implementation of Adaptive Transformers in RL In this work we replicate several results from Stabilizing Transfor

100 Nov 15, 2022
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

Qiujie (Jay) Dong 2 Oct 31, 2022
PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)

StarEnhancer StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral) Abstract: Image enhancement is a subjective process w

IDKiro 133 Dec 28, 2022
Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations

Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations Code repo for paper Trans-Encoder: Unsupervised sentence-pa

Amazon 101 Dec 29, 2022
Binary Passage Retriever (BPR) - an efficient passage retriever for open-domain question answering

BPR Binary Passage Retriever (BPR) is an efficient neural retrieval model for open-domain question answering. BPR integrates a learning-to-hash techni

Studio Ousia 147 Dec 07, 2022
NIMA: Neural IMage Assessment

PyTorch NIMA: Neural IMage Assessment PyTorch implementation of Neural IMage Assessment by Hossein Talebi and Peyman Milanfar. You can learn more from

Kyryl Truskovskyi 293 Dec 30, 2022