Implementation of the famous Image Manipulation\Forgery Detector "ManTraNet" in Pytorch

Overview

Generic badge Ask Me Anything ! visitors

Who has never met a forged picture on the web ? No one ! Everyday we are constantly facing fake pictures touched up in Photoshop but it is not always easy to detect it.

In this repo, you will find an implementation of ManTraNet, a manipulation tracing network for detection and localization of image forgeries with anomalous features. With this algorithm, you may find if an image has been falsified and even identify suspicious regions. A little example is displayed below.

It's a faifthful replica of the official implementation using however the library Pytorch. To learn more about this network, I suggest you to read the paper that describes it here.

On top of the MantraNet, there is also a file containing pre-trained weights obtained by the authors which is compatible with this pytorch version.

There is a slight discrepancy between the architecture depicted in the paper compared to the real one implemented and shared on the official repo. I put below the real architecture which is implemented here.

Please note that the rest of the README is largely inspired by the original repo.


What is ManTraNet ?

ManTraNet is an end-to-end image forgery detection and localization solution, which means it takes a testing image as input, and predicts pixel-level forgery likelihood map as output. Comparing to existing methods, the proposed ManTraNet has the following advantages:

  • Simplicity: ManTraNet needs no extra pre- and/or post-processing
  • Fast: ManTraNet puts all computations in a single network, and accepts an image of arbitrary size.
  • Robustness: ManTraNet does not rely on working assumptions other than the local manipulation assumption, i.e. some region in a testing image is modified differently from the rest.

Technically speaking, ManTraNet is composed of two sub-networks as shown below:

  • The Image Manipulation Trace Feature Extractor: It's a feature extraction network for the image manipulation classification task, which is sensitive to different manipulation types, and encodes the image manipulation in a patch into a fixed dimension feature vector.

  • The Local Anomaly Detection Network: It's a network that is designed following the intuition that we need to inspect more and more locally our extracted features if we want to be able to detect many kind of forgeries efficiently.

Where are the pre-trained weights coming from ?

  • The authors have first pretrained the Image Manipulation Trace Feature Extractor with an homemade database containing 385 types of forgeries. Unfortunately, their database is not shared publicly. Then, they trained the Anomaly Detector with four types of synthetic data, i.e. copy-move, splicing, removal, and enhancement.

Mantranet results from the composition of these two networks

The pre-trained weights available in this repo are the results of these two trainings achieved by the authors

Remarks : To train ManTraNet you need your own (relevant) datasets.

Dependency

  • Pytorch >= 1.8.1

Demo

One may simply download the repo and play with the provided ipython notebook.

N.B. :

  • Considering that there is some differences between the implementation of common functions between Tensorflow/Keras and Pytorch, some particular methods of Pytorch (like batch normalization or hardsigmoid) are re-implemented here to match perfectly with the original Tensorflow version

  • MantraNet is an architecture difficult to train without GPU/Multi-CPU. Even in "eval" mode, if you want to use it for detecting forgeries in one image it may take some minutes using only your CPU. It depends on the size of your input image.

  • There is also a slightly different version of MantraNet that uses ConvGRU instead of ConvLSTM in the repo. It enables to speed up a bit the training of the MantraNet without losing efficiency.

Citation :

@InProceedings{Wu_2019_CVPR,
author = {Wu, Yue and AbdAlmageed, Wael and Natarajan, Premkumar},
title = {ManTra-Net: Manipulation Tracing Network for Detection and Localization of Image Forgeries With Anomalous Features},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}
Owner
Rony Abecidan
PhD Candidate @ Centrale Lille
Rony Abecidan
InvTorch: memory-efficient models with invertible functions

InvTorch: Memory-Efficient Invertible Functions This module extends the functionality of torch.utils.checkpoint.checkpoint to work with invertible fun

Modar M. Alfadly 12 May 12, 2022
JstDoS - HTTP Protocol Stack Remote Code Execution Vulnerability

jstDoS If you are going to skid that, please give credits ! ^^ ¿How works? This

apolo 4 Feb 11, 2022
Masked regression code - Masked Regression

Masked Regression MR - Python Implementation This repositery provides a python implementation of MR (Masked Regression). MR can efficiently synthesize

Arbish Akram 1 Dec 23, 2021
It's like Shape Editor in Maya but works with skeletons (transforms).

Skeleposer What is Skeleposer? Briefly, it's like Shape Editor in Maya, but works with transforms and joints. It can be used to make complex facial ri

Alexander Zagoruyko 1 Nov 11, 2022
SimBERT升级版(SimBERTv2)!

RoFormer-Sim RoFormer-Sim,又称SimBERTv2,是我们之前发布的SimBERT模型的升级版。 介绍 https://kexue.fm/archives/8454 训练 tensorflow 1.14 + keras 2.3.1 + bert4keras 0.10.6 下载

318 Dec 31, 2022
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms

Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen

Phil Wang 108 Nov 23, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
Robust, modular and efficient implementation of advanced Hamiltonian Monte Carlo algorithms

AdvancedHMC.jl AdvancedHMC.jl provides a robust, modular and efficient implementation of advanced HMC algorithms. An illustrative example for Advanced

The Turing Language 167 Jan 01, 2023
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning". It curren

SenseTime X-Lab 573 Jan 04, 2023
Measuring Coding Challenge Competence With APPS

Measuring Coding Challenge Competence With APPS This is the repository for Measuring Coding Challenge Competence With APPS by Dan Hendrycks*, Steven B

Dan Hendrycks 218 Dec 27, 2022
Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

Jhacson Meza 47 Nov 18, 2022
Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

14 Nov 06, 2022
GLIP: Grounded Language-Image Pre-training

GLIP: Grounded Language-Image Pre-training Updates 12/06/2021: GLIP paper on arxiv https://arxiv.org/abs/2112.03857. Code and Model are under internal

Microsoft 862 Jan 01, 2023
Official PyTorch implementation of "Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning" (ICCV2021 Oral)

MeTAL - Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning (ICCV2021 Oral) Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaes

Sungyong Baik 44 Dec 29, 2022
Moiré Attack (MA): A New Potential Risk of Screen Photos [NeurIPS 2021]

Moiré Attack (MA): A New Potential Risk of Screen Photos [NeurIPS 2021] This repository is the official implementation of Moiré Attack (MA): A New Pot

Dantong Niu 22 Dec 24, 2022
"Domain Adaptive Semantic Segmentation without Source Data" (ACM MM 2021)

LDBE Pytorch implementation for two papers (the paper will be released soon): "Domain Adaptive Semantic Segmentation without Source Data", ACM MM2021.

benfour 16 Sep 28, 2022
🦕 NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano

🦕 nanosaur NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano Website: nanosaur.ai Do you need an help? Discord For tech

NanoSaur 162 Dec 09, 2022
PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer

SimTrans-Weak-Shot-Classification This repository contains the official PyTorch implementation of the following paper: Weak-shot Fine-grained Classifi

BCMI 60 Dec 02, 2022
Fre-GAN: Adversarial Frequency-consistent Audio Synthesis

Fre-GAN Vocoder Fre-GAN: Adversarial Frequency-consistent Audio Synthesis Training: python train.py --config config.json Citation: @misc{kim2021frega

Rishikesh (ऋषिकेश) 93 Dec 17, 2022
The implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021

DynamicNeuralGarments Introduction This repository contains the implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021. ./GarmentMoti

42 Dec 27, 2022