Notebooks, slides and dataset of the CorrelAid Machine Learning Winter School

Overview

CorrelAid Machine Learning Winter School

Welcome to the CorrelAid ML Winter School!

Task

The problem we want to solve is to classify trees in Roosevelt National Forest.

Setup

Please make sure you have a modern Python 3 installation. We recommend the Python distribution Miniconda that is available for all OS.

The easiest way to get started is with a clean virtual environment. You can do so by running the following commands, assuming that you have installed Miniconda or Anaconda.

$ conda create -n winter-school python=3.9
$ conda activate winter-school
(winter-school) $ pip install -r requirements.txt
(winter-school) $ python -m ipykernel install --user --name winter-school --display-name "Python 3.9 (winter-school)"

The first command will create a new environment with Python 3.9. To use this environment, you call conda activate <name> with the name of the environment as second step. Once activated, you can install packages as usual with the pip package manager. You will install all listed requirements from the provided requirements.txt as a third step. Finally, to actually make your new environment available as kernel within a Jupyter notebook, you need to run ipykernel install, which is the fourth command.

Once the setup is complete, you can run any notebook by calling

(winter-school) $ <jupyter-lab|jupyter notebook>

jupyter lab is opening your browser with a local version of JupyterLab, which is a web-based interactive development environment that is somewhat more powerful and more modern than the older Jupyter Notebook. Both work fine, so you can choose the tool that is more to your liking. We recommend to go with Jupyter Lab as it provides a file browser, among other improvements.

Data

The data to be analyzed is one of the classic data sets from the UCI Machine Learning Repository, the Forest Cover Type Dataset.

The dataset contains tree observations from four areas of the Roosevelt National Forest in Colorado. All observations are cartographic variables (no remote sensing) from 30 meter x 30 meter sections of forest. There are over half a million measurements total!

The dataset includes information on tree type, shadow coverage, distance to nearby landmarks (roads etcetera), soil type, and local topography.

Note: We provide the data set as it can be downloaded from kaggle and not in its original form from the UCI repository.

Attribute Information:

Given is the attribute name, attribute type, the measurement unit and a brief description. The forest cover type is the classification problem. The order of this listing corresponds to the order of numerals along the rows of the database.

Name / Data Type / Measurement / Description

  • Elevation / quantitative /meters / Elevation in meters
  • Aspect / quantitative / azimuth / Aspect in degrees azimuth
  • Slope / quantitative / degrees / Slope in degrees
  • Horizontal_Distance_To_Hydrology / quantitative / meters / Horz Dist to nearest surface water features
  • Vertical_Distance_To_Hydrology / quantitative / meters / Vert Dist to nearest surface water features
  • Horizontal_Distance_To_Roadways / quantitative / meters / Horz Dist to nearest roadway
  • Hillshade_9am / quantitative / 0 to 255 index / Hillshade index at 9am, summer solstice
  • Hillshade_Noon / quantitative / 0 to 255 index / Hillshade index at noon, summer soltice
  • Hillshade_3pm / quantitative / 0 to 255 index / Hillshade index at 3pm, summer solstice
  • Horizontal_Distance_To_Fire_Points / quantitative / meters / Horz Dist to nearest wildfire ignition points
  • Wilderness_Area (4 binary columns) / qualitative / 0 (absence) or 1 (presence) / Wilderness area designation
  • Soil_Type (40 binary columns) / qualitative / 0 (absence) or 1 (presence) / Soil Type designation
  • Cover_Type (7 types) / integer / 1 to 7 / Forest Cover Type designation
Owner
CorrelAid
Soziales Engagement 2.0 - Datenanalyse für den guten Zweck
CorrelAid
Credit fraud detection in Python using a Jupyter Notebook

Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn libr

Ali Akram 4 Dec 28, 2021
Callable PyTrees and filtered JIT/grad transformations => neural networks in JAX.

Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr

Patrick Kidger 909 Dec 30, 2022
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

João Fonseca 3 Jan 03, 2023
Black box hyperparameter optimization made easy.

BBopt BBopt aims to provide the easiest hyperparameter optimization you'll ever do. Think of BBopt like Keras (back when Theano was still a thing) for

Evan Hubinger 70 Nov 03, 2022
A new data augmentation method for extreme lighting conditions.

Random Shadows and Highlights This repo has the source code for the paper: Random Shadows and Highlights: A new data augmentation method for extreme l

Osama Mazhar 35 Nov 26, 2022
Motion Reconstruction Code and Data for Skills from Videos (SFV)

Motion Reconstruction Code and Data for Skills from Videos (SFV) This repo contains the data and the code for motion reconstruction component of the S

268 Dec 01, 2022
PyTea: PyTorch Tensor shape error analyzer

PyTea: PyTorch Tensor Shape Error Analyzer paper project page Requirements node.js = 12.x python = 3.8 z3-solver = 4.8 How to install and use # ins

ROPAS Lab. 240 Jan 02, 2023
PyTorch implementation of EfficientNetV2

[NEW!] Check out our latest work involution accepted to CVPR'21 that introduces a new neural operator, other than convolution and self-attention. PyTo

Duo Li 375 Jan 03, 2023
Compute FID scores with PyTorch.

FID score for PyTorch This is a port of the official implementation of Fréchet Inception Distance to PyTorch. See https://github.com/bioinf-jku/TTUR f

2.1k Jan 06, 2023
The code written during my Bachelor Thesis "Classification of Human Whole-Body Motion using Hidden Markov Models".

This code was written during the course of my Bachelor thesis Classification of Human Whole-Body Motion using Hidden Markov Models. Some things might

Matthias Plappert 14 Dec 06, 2022
Pytorch implementation of

EfficientTTS Unofficial Pytorch implementation of "EfficientTTS: An Efficient and High-Quality Text-to-Speech Architecture"(arXiv). Disclaimer: Somebo

Liu Songxiang 109 Nov 16, 2022
EMNLP 2021 - Frustratingly Simple Pretraining Alternatives to Masked Language Modeling

Frustratingly Simple Pretraining Alternatives to Masked Language Modeling This is the official implementation for "Frustratingly Simple Pretraining Al

Atsuki Yamaguchi 31 Nov 18, 2022
A Simple and Versatile Framework for Object Detection and Instance Recognition

SimpleDet - A Simple and Versatile Framework for Object Detection and Instance Recognition Major Features FP16 training for memory saving and up to 2.

TuSimple 3k Dec 12, 2022
PyTorch implementation of neural style randomization for data augmentation

README Augment training images for deep neural networks by randomizing their visual style, as described in our paper: https://arxiv.org/abs/1809.05375

84 Nov 23, 2022
[CVPR 2021 Oral] Variational Relational Point Completion Network

VRCNet: Variational Relational Point Completion Network This repository contains the PyTorch implementation of the paper: Variational Relational Point

PL 121 Dec 12, 2022
SAT: 2D Semantics Assisted Training for 3D Visual Grounding, ICCV 2021 (Oral)

SAT: 2D Semantics Assisted Training for 3D Visual Grounding SAT: 2D Semantics Assisted Training for 3D Visual Grounding by Zhengyuan Yang, Songyang Zh

Zhengyuan Yang 22 Nov 30, 2022
BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalanced Tongue Data

Balanced-Evolutionary-Semi-Stacking Code for the paper ''BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalan

0 Jan 16, 2022
Experiments for distributed optimization algorithms

Network-Distributed Algorithm Experiments -- This repository contains a set of optimization algorithms and objective functions, and all code needed to

Boyue Li 40 Dec 04, 2022
[CVPR 2021] Involution: Inverting the Inherence of Convolution for Visual Recognition, a brand new neural operator

involution Official implementation of a neural operator as described in Involution: Inverting the Inherence of Convolution for Visual Recognition (CVP

Duo Li 1.3k Dec 28, 2022
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022