Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks

Overview

Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks

Requirements

  • python 0.10+
  • rdkit 2020.03.3.0
  • biopython 1.78
  • openbabel 2.4.1
  • numpy 1.19.2
  • scipy 1.5.2
  • torchvision 0.7.0

Conda enviroment is highly recommended for this implementation

Data Preparation for classification models

Data preperation requires the ligand and protein to be in a mol format readable by rdkit .mol, .mol2, and .pdb are readily handled by rdkit .sdf is easily handled with openbabel conversion, made convenient with the pybel wrapper

Both files can then be fed into extractM2.py where the cropping window can be adjusted on line 29 The extract method will operates best if the initial protein file is in pdbqt format. For easy model integration it is best to store the m2 protein window produced by the extract script along with the original protein ex: pickle.dump((m1,m2), file)

Once cropped complexes are stored, their numpy featurization files can be created. Files for the different models are labeled in the Data_Prep directory

The scripts are designed to use keys that reference the cropped and stored pairs from the previous step. Users will need to alter scripts to include their desired directories, as well as key traversal. Once these changes have been made, the scripts can be called with

python -W ignore gnn[f/p]_data_prep.py

Data Preparation for regression models

The data needs to be in mol format as similar to classification models. We have provided some sample mol files representing protein and ligand. Here the protein is cropped at 8Å window using the extract script as mentioned previously.

The cropped protein-ligand can be used to create features in numpy format. Sample training and test keys along with the corresponding pIC50 and experimental-binding-affinity (EBA) labels are provided in keys folder. All the files are saved in pickle format with train and test keys as list and the label files as disctionary with key corresponding to the train/test key and value corresponding to the label. The prepare_eba_data.py and prepapre_pic50_data.py uses the cropped protein-ligand mol files to create the correspnding features for the model and save them in compressed numpy file format in the corresponding numpy directory.

These scripts can be called as:

python repare_pic50_data.py <path to pkl-mol directory> <path to save numpy features>
python repare_eba_data.py <path to pkl-mol directory> <path to save numpy features>

Training

Below is an example of the training command. Additional options can be added to the argument parser here (learning rate, layer amount and dimension, etc). Defaults are in place for undeclared parameters including a save directory.

Classfication models

python -W ignore -u train.py --dropout_rate=0.3 --epoch=500 --ngpu=1 --batch_size=32 --num_workers=0  --train_keys=<your_training_keys.pkl>  --test_keys=<your_test_keys.pkl>

Regression models

python -W ignore -u train.py --dropout_rate=0.3 --epoch=500 --ngpu=1 --batch_size=1 --num_workers=0 --data_dir=<path to feature-numpy folder> --train_keys=<your_training_keys.pkl>  --test_keys=<your_test_keys.pkl>

The save directory stores each epoch as a .pt allowing the best model inatance to be loaded later on Training and test metrics such as loss and ROC are stored in the same directory for each GPU used. Ex 3 GPUS: log-rank1.csv, log-rank2.csv, and log-rank3.csv

Owner
Neeraj Kumar
Computational Biology/Chemistry and Bioinformatics.
Neeraj Kumar
[PNAS2021] The neural architecture of language: Integrative modeling converges on predictive processing

The neural architecture of language: Integrative modeling converges on predictive processing Code accompanying the paper The neural architecture of la

Martin Schrimpf 36 Dec 01, 2022
Official Implementation (PyTorch) of "Point Cloud Augmentation with Weighted Local Transformations", ICCV 2021

PointWOLF: Point Cloud Augmentation with Weighted Local Transformations This repository is the implementation of PointWOLF(To appear). Sihyeon Kim1*,

MLV Lab (Machine Learning and Vision Lab at Korea University) 16 Nov 03, 2022
PyTorch module to use OpenFace's nn4.small2.v1.t7 model

OpenFace for Pytorch Disclaimer: This codes require the input face-images that are aligned and cropped in the same way of the original OpenFace. * I m

Pete Tae-hoon Kim 176 Dec 12, 2022
CLIP+FFT text-to-image

Aphantasia This is a text-to-image tool, part of the artwork of the same name. Based on CLIP model, with FFT parameterizer from Lucent library as a ge

vadim epstein 690 Jan 02, 2023
TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video

TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video Timely handgun detection is a cr

Mario Duran-Vega 18 Dec 26, 2022
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
Neural Surface Maps

Neural Surface Maps Official implementation of Neural Surface Maps - Luca Morreale, Noam Aigerman, Vladimir Kim, Niloy J. Mitra [Paper] [Project Page]

Luca Morreale 49 Dec 13, 2022
This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled Time Series presented at Causal Analysis Workshop 2021.

signed-area-causal-inference This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled

Will Glad 1 Mar 11, 2022
This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans This repository contains the implementation of the pap

Photogrammetry & Robotics Bonn 40 Dec 01, 2022
Melanoma Skin Cancer Detection using Convolutional Neural Networks and Transfer Learning🕵🏻‍♂️

This is a Kaggle competition in which we have to identify if the given lesion image is malignant or not for Melanoma which is a type of skin cancer.

Vipul Shinde 1 Jan 27, 2022
《Improving Unsupervised Image Clustering With Robust Learning》(2020)

Improving Unsupervised Image Clustering With Robust Learning This repo is the PyTorch codes for "Improving Unsupervised Image Clustering With Robust L

Sungwon Park 129 Dec 27, 2022
Multi Camera Calibration

Multi Camera Calibration 'modules/camera_calibration/app/camera_calibration.cpp' is for calculating extrinsic parameter of each individual cameras. 'm

7 Dec 01, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

63 Nov 18, 2022
Neural network for digit classification powered by cuda

cuda_nn_mnist Neural network library for digit classification powered by cuda Resources The library was built to work with MNIST dataset. python-mnist

Nikita Ardashev 1 Dec 20, 2021
EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch

EGNN - Pytorch Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This

Phil Wang 259 Jan 04, 2023
Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

SegSwap Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery" [PDF] [Project page] If our project

xshen 41 Dec 10, 2022
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
Pytorch Implementation for CVPR2018 Paper: Learning to Compare: Relation Network for Few-Shot Learning

LearningToCompare Pytorch Implementation for Paper: Learning to Compare: Relation Network for Few-Shot Learning Howto download mini-imagenet and make

Jackie Loong 246 Dec 19, 2022
[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Enjoy-Hamburger 🍔 Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T

Gsunshine 271 Dec 29, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022