💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena

Related tags

Deep LearningVALSE
Overview

VALSE 💃

💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena. https://arxiv.org/abs/2112.07566

Data Instructions

Please find the data in the data folder. The dataset is in json format and contains the following relevant fields:

  • A reference to the image in the original dataset: dataset and image_file.
  • The valid sentence, the caption for VALSE: caption.
  • The altered caption, the foil.
  • The annotator's votes (3 annotators per sample): mturk.
    • The subentry caption counts the number of annotators who chose the caption, but/and not the foil, to be the one describing the image.
    • The subentry foil counts how many of the three annotators chose the foil to be (also) describing the image.
    • For more information, see subsec. 4.4 and App. E of the paper.

‼️ Please be aware that the jsons are containing both valid (meaning: validated by annotators) and non-validated samples. In order to work only with the valid set, please consider filtering them:

We consider a valid foil to mean: at least two out of three annotators identified the caption, but not the foil, as the text which accurately describes the image.

This means that the valid samples of the dataset are the ones where sample["mturk"]["caption"] >= 2.

Example instance:

{
    "actions_test_0": {
        "dataset": "SWiG",
        "original_split": "test",                 # the split of the original dataset in which the sample belonged to
        "dataset_idx": "exercising_255.jpg",      # the sample id in the original dataset
        "linguistic_phenomena": "actions",        # the linguistic phenomenon targeted
        "image_file": "exercising_255.jpg",
        "caption": "A man exercises his torso.",
        "classes": "man",                         # the word of the caption that was replaced
        "classes_foil": "torso",                  # the foil word / phrase
        "mturk": {
            "foil": 0,
            "caption": 3,
            "other": 0
        },
        "foil": "A torso exercises for a man."
    }, ...
}

Images

For the images, please follow the downloading instructions of the respective original dataset. The provenance of the original images is mentioned in the json files in the field dataset.

Reference

Please cite our 💃 VALSE paper if you are using this dataset.

@misc{parcalabescu2021valse,
      title={VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena}, 
      author={Letitia Parcalabescu and Michele Cafagna and Lilitta Muradjan and Anette Frank and Iacer Calixto and Albert Gatt},
      year={2021},
      eprint={2112.07566},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
Heidelberg-NLP
Heidelberg Natural Language Processing Group
Heidelberg-NLP
Open-sourcing the Slates Dataset for recommender systems research

FINN.no Recommender Systems Slate Dataset This repository accompany the paper "Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sa

FINN.no 48 Nov 28, 2022
Benchmarks for the Optimal Power Flow Problem

Power Grid Lib - Optimal Power Flow This benchmark library is curated and maintained by the IEEE PES Task Force on Benchmarks for Validation of Emergi

A Library of IEEE PES Power Grid Benchmarks 207 Dec 08, 2022
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks

Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks This is our Pytorch implementation for the paper: Zirui Zhu, Chen Gao, Xu C

Zirui Zhu 3 Dec 30, 2022
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.

TorchRL Disclaimer This library is not officially released yet and is subject to change. The features are available before an official release so that

Meta Research 860 Jan 07, 2023
A web application that provides real time temperature and humidity readings of a house.

About A web application which provides real time temperature and humidity readings of a house. If you're interested in the data collected so far click

Ben Thompson 3 Jan 28, 2022
Unofficial implementation of "TTNet: Real-time temporal and spatial video analysis of table tennis" (CVPR 2020)

TTNet-Pytorch The implementation for the paper "TTNet: Real-time temporal and spatial video analysis of table tennis" An introduction of the project c

Nguyen Mau Dung 438 Dec 29, 2022
Model parallel transformers in Jax and Haiku

Mesh Transformer Jax A haiku library using the new(ly documented) xmap operator in Jax for model parallelism of transformers. See enwik8_example.py fo

Ben Wang 4.8k Jan 01, 2023
The code of NeurIPS 2021 paper "Scalable Rule-Based Representation Learning for Interpretable Classification".

Rule-based Representation Learner This is a PyTorch implementation of Rule-based Representation Learner (RRL) as described in NeurIPS 2021 paper: Scal

Zhuo Wang 53 Dec 17, 2022
Open source repository for the code accompanying the paper 'PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations'.

PatchNets This is the official repository for the project "PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations". For details,

16 May 22, 2022
My course projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU)

ML2021Spring There are my projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU) Course Web : https://speech.ee.

Ding-Li Chen 15 Aug 29, 2022
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator

CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator This is the official code repository for NeurIPS 2021 paper: CARMS: Categorica

Alek Dimitriev 1 Jul 09, 2022
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 06, 2023
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme

Maxime Burchi 145 Dec 30, 2022
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning"

MarginGAN This repository is the implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning". 1."preliminary" is the imp

Van 7 Dec 23, 2022
[ECCV 2020] XingGAN for Person Image Generation

Contents XingGAN or CrossingGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowl

Hao Tang 218 Oct 29, 2022
FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI 声明: 本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关! 简介 本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现

Fabian 246 Dec 28, 2022
This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.

MultiModal-InfoMax This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Informa

Deep Cognition and Language Research (DeCLaRe) Lab 89 Dec 26, 2022