Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021

Overview

Learning the Best Pooling Strategy for Visual Semantic Embedding

License: MIT

Official PyTorch implementation of the paper Learning the Best Pooling Strategy for Visual Semantic Embedding (CVPR 2021 Oral).

Please use the following bib entry to cite this paper if you are using any resources from the repo.

@inproceedings{chen2021vseinfty,
     title={Learning the Best Pooling Strategy for Visual Semantic Embedding},
     author={Chen, Jiacheng and Hu, Hexiang and Wu, Hao and Jiang, Yuning and Wang, Changhu},
     booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
     year={2021}
} 

We referred to the implementations of VSE++ and SCAN to build up our codebase.

Introduction

Illustration of the standard Visual Semantic Embedding (VSE) framework with the proposed pooling-based aggregator, i.e., Generalized Pooling Operator (GPO). It is simple and effective, which automatically adapts to the appropriate pooling strategy given different data modality and feature extractor, and improves VSE models at negligible extra computation cost.

Image-text Matching Results

The following tables show partial results of image-to-text retrieval on COCO and Flickr30K datasets. In these experiments, we use BERT-base as the text encoder for our methods. This branch provides our code and pre-trained models for using BERT as the text backbone, please check out to the bigru branch for the code and pre-trained models for using BiGRU as the text backbone.

Note that the VSE++ entries in the following tables are the VSE++ model with the specified feature backbones, thus the results are different from the original VSE++ paper.

Results of 5-fold evaluation on COCO 1K Test Split

Visual Backbone Text Backbone R1 R5 R1 R5 Link
VSE++ BUTD region BERT-base 67.9 91.9 54.0 85.6 -
VSEInfty BUTD region BERT-base 79.7 96.4 64.8 91.4 Here
VSEInfty BUTD grid BERT-base 80.4 96.8 66.4 92.1 Here
VSEInfty WSL grid BERT-base 84.5 98.1 72.0 93.9 Here

Results on Flickr30K Test Split

Visual Backbone Text Backbone R1 R5 R1 R5 Link
VSE++ BUTD region BERT-base 63.4 87.2 45.6 76.4 -
VSEInfty BUTD region BERT-base 81.7 95.4 61.4 85.9 Here
VSEInfty BUTD grid BERT-base 81.5 97.1 63.7 88.3 Here
VSEInfty WSL grid BERT-base 88.4 98.3 74.2 93.7 Here

Result (in [email protected]) on Crisscrossed Caption benchmark (trained on COCO)

Visual Backbone Text Backbone I2T T2I T2T I2I
VSRN BUTD region BiGRU 52.4 40.1 41.0 44.2
DE EfficientNet-B4 grid BERT-base 55.9 41.7 42.6 38.5
VSEInfty BUTD grid BERT-base 60.6 46.2 45.9 44.4
VSEInfty WSL grid BERT-base 67.9 53.6 46.7 51.3

Preparation

Environment

We trained and evaluated our models with the following key dependencies:

  • Python 3.7.3

  • Pytorch 1.2.0

  • Transformers 2.1.0

Run pip install -r requirements.txt to install the exactly same dependencies as our experiments. However, we also verified that using the latest Pytorch 1.8.0 and Transformers 4.4.2 can also produce similar results.

Data

We organize all data used in the experiments in the following manner:

data
├── coco
│   ├── precomp  # pre-computed BUTD region features for COCO, provided by SCAN
│   │      ├── train_ids.txt
│   │      ├── train_caps.txt
│   │      ├── ......
│   │
│   ├── images   # raw coco images
│   │      ├── train2014
│   │      └── val2014
│   │
│   ├── cxc_annots # annotations for evaluating COCO-trained models on the CxC benchmark
│   │
│   └── id_mapping.json  # mapping from coco-id to image's file name
│   
│
├── f30k
│   ├── precomp  # pre-computed BUTD region features for Flickr30K, provided by SCAN
│   │      ├── train_ids.txt
│   │      ├── train_caps.txt
│   │      ├── ......
│   │
│   ├── flickr30k-images   # raw coco images
│   │      ├── xxx.jpg
│   │      └── ...
│   └── id_mapping.json  # mapping from f30k index to image's file name
│   
├── weights
│      └── original_updown_backbone.pth # the BUTD CNN weights
│
└── vocab  # vocab files provided by SCAN (only used when the text backbone is BiGRU)

The download links for original COCO/F30K images, precomputed BUTD features, and corresponding vocabularies are from the offical repo of SCAN. The precomp folders contain pre-computed BUTD region features, data/coco/images contains raw MS-COCO images, and data/f30k/flickr30k-images contains raw Flickr30K images.

The id_mapping.json files are the mapping from image index (ie, the COCO id for COCO images) to corresponding filenames, we generated these mappings to eliminate the need of the pycocotools package.

weights/original_updowmn_backbone.pth is the pre-trained ResNet-101 weights from Bottom-up Attention Model, we converted the original Caffe weights into Pytorch. Please download it from this link.

The data/coco/cxc_annots directory contains the necessary data files for running the Criscrossed Caption (CxC) evaluation. Since there is no official evaluation protocol in the CxC repo, we processed their raw data files and generated these data files to implement our own evaluation. We have verified our implementation by aligning the evaluation results of the official VSRN model with the ones reported by the CxC paper Please download the data files at this link.

Please download all necessary data files and organize them in the above manner, the path to the data directory will be the argument to the training script as shown below.

Training

Assuming the data root is /tmp/data, we provide example training scripts for:

  1. Grid feature with BUTD CNN for the image feature, BERT-base for the text feature. See train_grid.sh

  2. BUTD Region feature for the image feature, BERT-base for the text feature. See train_region.sh

To use other CNN initializations for the grid image feature, change the --backbone_source argument to different values:

  • (1). the default detector is to use the BUTD ResNet-101, we have adapted the original Caffe weights into Pytorch and provided the download link above;
  • (2). wsl is to use the backbones from large-scale weakly supervised learning;
  • (3). imagenet_res152 is to use the ResNet-152 pre-trained on ImageNet.

Evaluation

Run eval.py to evaluate specified models on either COCO and Flickr30K. For evaluting pre-trained models on COCO, use the following command (assuming there are 4 GPUs, and the local data path is /tmp/data):

CUDA_VISIBLE_DEVICES=0,1,2,3 python3 eval.py --dataset coco --data_path /tmp/data/coco

For evaluting pre-trained models on Flickr-30K, use the command:

CUDA_VISIBLE_DEVICES=0,1,2,3 python3 eval.py --dataset f30k --data_path /tmp/data/f30k

For evaluating pre-trained COCO models on the CxC dataset, use the command:

CUDA_VISIBLE_DEVICES=0,1,2,3 python3 eval.py --dataset coco --data_path /tmp/data/coco --evaluate_cxc

For evaluating two-model ensemble, first run single-model evaluation commands above with the argument --save_results, and then use eval_ensemble.py to get the results (need to manually specify the paths to the saved results).

Owner
Jiacheng Chen
Jiacheng Chen
[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

OpenCOOD OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV

Runsheng Xu 322 Dec 23, 2022
Equivariant GNN for the prediction of atomic multipoles up to quadrupoles.

Equivariant Graph Neural Network for Atomic Multipoles Description Repository for the Model used in the publication 'Learning Atomic Multipoles: Predi

16 Nov 22, 2022
Code for "Diversity can be Transferred: Output Diversification for White- and Black-box Attacks"

Output Diversified Sampling (ODS) This is the github repository for the NeurIPS 2020 paper "Diversity can be Transferred: Output Diversification for W

50 Dec 11, 2022
Keras code and weights files for popular deep learning models.

Trained image classification models for Keras THIS REPOSITORY IS DEPRECATED. USE THE MODULE keras.applications INSTEAD. Pull requests will not be revi

François Chollet 7.2k Dec 29, 2022
Melanoma Skin Cancer Detection using Convolutional Neural Networks and Transfer Learning🕵🏻‍♂️

This is a Kaggle competition in which we have to identify if the given lesion image is malignant or not for Melanoma which is a type of skin cancer.

Vipul Shinde 1 Jan 27, 2022
This repository contains the source codes for the paper AtlasNet V2 - Learning Elementary Structures.

AtlasNet V2 - Learning Elementary Structures This work was build upon Thibault Groueix's AtlasNet and 3D-CODED projects. (you might want to have a loo

Théo Deprelle 123 Nov 11, 2022
Python implementation of "Elliptic Fourier Features of a Closed Contour"

PyEFD An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1]. Installation pip install pyef

Henrik Blidh 71 Dec 09, 2022
DCGAN-tensorflow - A tensorflow implementation of Deep Convolutional Generative Adversarial Networks

DCGAN in Tensorflow Tensorflow implementation of Deep Convolutional Generative Adversarial Networks which is a stabilize Generative Adversarial Networ

Taehoon Kim 7.1k Dec 29, 2022
[TNNLS 2021] The official code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement"

CSDNet-CSDGAN this is the code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement" Environment Preparing pyt

Jiaao Zhang 17 Nov 05, 2022
Awesome Long-Tailed Learning

Awesome Long-Tailed Learning This repo pays specially attention to the long-tailed distribution, where labels follow a long-tailed or power-law distri

Stomach_ache 284 Jan 06, 2023
📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

Rahul Vigneswaran 1 Jan 17, 2022
A benchmark framework for Tensorflow

TensorFlow benchmarks This repository contains various TensorFlow benchmarks. Currently, it consists of two projects: PerfZero: A benchmark framework

1.1k Dec 30, 2022
Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction This repository contains the code for the p

Sven 30 Jan 05, 2023
A simple library that implements CLIP guided loss in PyTorch.

pytorch_clip_guided_loss: Pytorch implementation of the CLIP guided loss for Text-To-Image, Image-To-Image, or Image-To-Text generation. A simple libr

Sergei Belousov 74 Dec 26, 2022
10x faster matrix and vector operations

Bolt is an algorithm for compressing vectors of real-valued data and running mathematical operations directly on the compressed representations. If yo

2.3k Jan 09, 2023
K-Nearest Neighbor in Pytorch

Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.

Chris Choy 65 Dec 01, 2022
official implemntation for "Contrastive Learning with Stronger Augmentations"

CLSA CLSA is a self-supervised learning methods which focused on the pattern learning from strong augmentations. Copyright (C) 2020 Xiao Wang, Guo-Jun

Lab for MAchine Perception and LEarning (MAPLE) 47 Nov 29, 2022
shufflev2-yolov5:lighter, faster and easier to deploy

shufflev2-yolov5: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size

pogg 1.5k Jan 05, 2023
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022
Deep learned, hardware-accelerated 3D object pose estimation

Isaac ROS Pose Estimation Overview This repository provides NVIDIA GPU-accelerated packages for 3D object pose estimation. Using a deep learned pose e

NVIDIA Isaac ROS 41 Dec 18, 2022