PaRT: Parallel Learning for Robust and Transparent AI

Related tags

Deep LearningPaRT
Overview

PaRT: Parallel Learning for Robust and Transparent AI

This repository contains the code for PaRT, an algorithm for training a base network on multiple tasks in parallel. The diagram of PaRT is shown in the figure below.

Below, we provide details regarding dependencies and the instructions for running the code for each experiment. We have prepared scripts for each experiment to help the user have a smooth experience.

Dependencies

  • python >= 3.8
  • pytorch >= 1.7
  • scikit-learn
  • torchvision
  • tensorboard
  • matplotlib
  • pillow
  • psutil
  • scipy
  • numpy
  • tqdm

SETUP ENVIRONMENT

To setup the conda env and create the required directories go to the scripts directory and run the following commands in the terminal:

conda init bash
bash -i setupEnv.sh

Check that the final output of these commands is:

Installed torch version {---}
Virtual environment was made successfully

CIFAR 100 EXPERIMENTS

Instructions to run the code for the CIFAR100 experiments:

--------------------- BASELINE EXPERIMENTS ---------------------

To run the baseline experiments for the first seed, go to the scripts directory and run the following command in the terminal:

bash -i runCIFAR100Baseline.sh ../../scripts/test_case0_cifar100_baseline.json

To run the experiment for other seeds, simply change the value of test_case in test_case0_cifar100_baseline.json to 1,2,3, or 4.

--------------------- PARALLEL EXPERIMENTS ---------------------

To run the parallel experiments for the first seed, go to the scripts directory and run the following command in the terminal:

bash -i runCIFAR100Parallel.sh ../../scripts/test_case0_cifar100_parallel.json

To run the experiment for other seeds, simply change the value of test_case in test_case0_cifar100_parallel.json to 1,2,3, or 4.

CIFAR 10 AND CIFAR 100 EXPERIMENTS

Instructions to run the code for the CIFAR10 and CIFAR100 experiments:

--------------------- BASELINE EXPERIMENTS ---------------------

To run the parallel experiments for the first seed, go to the scripts directory and run the following command in the terminal:

bash -i runCIFAR10_100Baseline.sh ../../scripts/test_case0_cifar10_100_baseline.json

To run the experiment for other seeds, simply change the value of test_case in test_case0_cifar10_100_baseline.json to 1,2,3, or 4.

--------------------- PARALLEL EXPERIMENTS ---------------------

To run the baseline experiments for the first seed, go to the scripts directory and run the following command in the terminal:

bash -i runCIFAR10_100Parallel.sh ../../scripts/test_case0_cifar10_100_parallel.json

To run the experiment for other seeds, simply change the value of test_case in test_case0_cifar10_100_parallel.json to 1,2,3, or 4.

FIVETASKS EXPERIMENTS

The dataset for this experiment can be downloaded from the link provided by the CPG GitHub Page or Here. Instructions to run the code for the FiveTasks experiments:

--------------------- BASELINE EXPERIMENTS ---------------------

To run the baseline experiments for the first seed, go to the scripts directory and run the following command in the terminal:

bash -i run5TasksBaseline.sh ../../scripts/test_case0_5tasks_baseline.json

To run the experiment for other seeds, simply change the value of test_case in test_case0_5tasks_baseline.json to 1,2,3, or 4.

--------------------- PARALLEL EXPERIMENTS ---------------------

To run the parallel experiments for the first seed, go to the scripts directory and run the following command in the terminal:

bash -i run5TasksParallel.sh ../../scripts/test_case0_5tasks_parallel.json

To run the experiment for other seeds, simply change the value of test_case in test_case0_5tasks_parallel.json to 1,2,3, or 4.

Paper

Please cite our paper:

Paknezhad, M., Rengarajan, H., Yuan, C., Suresh, S., Gupta, M., Ramasamy, S., Lee H. K., PaRT: Parallel Learning Towards Robust and Transparent AI, arXiv:2201.09534 (2022)

Owner
Mahsa
I develop DL, ML, computer vision, and image processing algorithms for problems in deep learning and medical domain.
Mahsa
Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL BASALT Challenge.

KAIROS MineRL BASALT Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL B

Vinicius G. Goecks 37 Oct 30, 2022
QuALITY: Question Answering with Long Input Texts, Yes!

QuALITY: Question Answering with Long Input Texts, Yes! Authors: Richard Yuanzhe Pang,* Alicia Parrish,* Nitish Joshi,* Nikita Nangia, Jason Phang, An

ML² AT CILVR 61 Jan 02, 2023
the code for paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration"

EOW-Softmax This code is for the paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration". Accepted by ICCV21. Usage Commnd exa

Yezhen Wang 36 Dec 02, 2022
Code for generating a single image pretraining dataset

Single Image Pretraining of Visual Representations As shown in the paper A critical analysis of self-supervision, or what we can learn from a single i

Yuki M. Asano 12 Dec 19, 2022
Codebase for Image Classification Research, written in PyTorch.

pycls pycls is an image classification codebase, written in PyTorch. It was originally developed for the On Network Design Spaces for Visual Recogniti

Facebook Research 2k Jan 01, 2023
This is a re-implementation of TransGAN: Two Pure Transformers Can Make One Strong GAN (CVPR 2021) in PyTorch.

TransGAN: Two Transformers Can Make One Strong GAN [YouTube Video] Paper Authors: Yifan Jiang, Shiyu Chang, Zhangyang Wang CVPR 2021 This is re-implem

Ahmet Sarigun 79 Jan 05, 2023
Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals.

Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals This repo contains the Pytorch implementation of our paper: Unsupervised Seman

Wouter Van Gansbeke 335 Dec 28, 2022
Torch code for our CVPR 2018 paper "Residual Dense Network for Image Super-Resolution" (Spotlight)

Residual Dense Network for Image Super-Resolution This repository is for RDN introduced in the following paper Yulun Zhang, Yapeng Tian, Yu Kong, Bine

Yulun Zhang 494 Dec 30, 2022
Method for facial emotion recognition compitition of Xunfei and Datawhale .

人脸情绪识别挑战赛-第3名-W03KFgNOc-源代码、模型以及说明文档 队名:W03KFgNOc 排名:3 正确率: 0.75564 队员:yyMoming,xkwang,RichardoMu。 比赛链接:人脸情绪识别挑战赛 文章地址:link emotion 该项目分别训练八个模型并生成csv文

6 Oct 17, 2022
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data

SEDE SEDE (Stack Exchange Data Explorer) is new dataset for Text-to-SQL tasks with more than 12,000 SQL queries and their natural language description

Rupert. 83 Nov 11, 2022
using STGCN to achieve egg classification task

EEG Classification   The task requires us to classify electroencephalography(EEG) into six categories, including human body, human face, animal body,

4 Jun 13, 2022
DLL: Direct Lidar Localization

DLL: Direct Lidar Localization Summary This package presents DLL, a direct map-based localization technique using 3D LIDAR for its application to aeri

Service Robotics Lab 127 Dec 16, 2022
Train neural network for semantic segmentation (deep lab V3) with pytorch in less then 50 lines of code

Train neural network for semantic segmentation (deep lab V3) with pytorch in 50 lines of code Train net semantic segmentation net using Trans10K datas

17 Dec 19, 2022
Brain tumor detection using Convolution-Neural Network (CNN)

Detect and Classify Brain Tumor using CNN. A system performing detection and classification by using Deep Learning Algorithms using Convolution-Neural Network (CNN).

assia 1 Feb 07, 2022
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
TensorFlow, PyTorch and Numpy layers for generating Orthogonal Polynomials

OrthNet TensorFlow, PyTorch and Numpy layers for generating multi-dimensional Orthogonal Polynomials 1. Installation 2. Usage 3. Polynomials 4. Base C

Chuan 29 May 25, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
object recognition with machine learning on Respberry pi

Respberrypi_object-recognition object recognition with machine learning on Respberry pi line.py 建立一支與樹梅派連線的 linebot 使用此 linebot 遠端控制樹梅派拍照 config.ini l

1 Dec 11, 2021
Campsite Reservation Finder

yellowstone-camping UPDATE: yellowstone-camping is being expanded and renamed to camply. The updated tool now interfaces with the Recreation.gov API a

Justin Flannery 233 Jan 08, 2023