NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Overview

Real-ESRGAN ncnn Vulkan

CI License: MIT Open issue Closed issue

This project is the ncnn implementation of Real-ESRGAN. Real-ESRGAN ncnn Vulkan heavily borrows from realsr-ncnn-vulkan. Many thanks to nihui, ncnn and realsr-ncnn-vulkan 😁

Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration. We also optimize it for anime images.

Contents


If Real-ESRGAN is helpful in your photos/projects, please help to ⭐ this repo or recommend it to your friends. Thanks 😊
Other recommended projects:
▢️ Real-ESRGAN: A practical algorithm for general image restoration
▢️ GFPGAN: A practical algorithm for real-world face restoration
▢️ BasicSR: An open-source image and video restoration toolbox
▢️ facexlib: A collection that provides useful face-relation functions.
▢️ HandyView: A PyQt5-based image viewer that is handy for view and comparison.

πŸ“– Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

[Paper]   [Project Page]   [Demo]
Xintao Wang, Liangbin Xie, Chao Dong, Ying Shan
Tencent ARC Lab; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences

⏳ TODO List

  • Support further cheap arbitrary resize (e.g., bicubic, bilinear) for the model outputs
  • Bug: Some PCs will output black images
  • Add the guidance for ncnn model conversion
  • Support face restoration - GFPGAN

πŸ’» Usages

Example Command

realesrgan-ncnn-vulkan.exe -i input.jpg -o output.png -n realesrgan-x4plus-anime

Full Usages

Usage: realesrgan-ncnn-vulkan.exe -i infile -o outfile [options]...

  -h                   show this help
  -v                   verbose output
  -i input-path        input image path (jpg/png/webp) or directory
  -o output-path       output image path (jpg/png/webp) or directory
  -s scale             upscale ratio (4, default=4)
  -t tile-size         tile size (>=32/0=auto, default=0) can be 0,0,0 for multi-gpu
  -m model-path        folder path to pre-trained models(default=models)
  -n model-name        model name (default=realesrgan-x4plus, can be realesrgan-x4plus | realesrgan-x4plus-anime | realesrnet-x4plus)
  -g gpu-id            gpu device to use (default=0) can be 0,1,2 for multi-gpu
  -j load:proc:save    thread count for load/proc/save (default=1:2:2) can be 1:2,2,2:2 for multi-gpu
  -x                   enable tta mode
  -f format            output image format (jpg/png/webp, default=ext/png)
  • input-path and output-path accept either file path or directory path
  • scale = scale level, 4 = upscale 4x
  • tile-size = tile size, use smaller value to reduce GPU memory usage, default selects automatically
  • load:proc:save = thread count for the three stages (image decoding + model upscaling + image encoding), using larger values may increase GPU usage and consume more GPU memory. You can tune this configuration with "4:4:4" for many small-size images, and "2:2:2" for large-size images. The default setting usually works fine for most situations. If you find that your GPU is hungry, try increasing thread count to achieve faster processing.
  • format = the format of the image to be output, png is better supported, however webp generally yields smaller file sizes, both are losslessly encoded

If you encounter crash or error, try to upgrade your GPU driver

🌏 Other Open-Source Code Used

πŸ“œ BibTeX

@InProceedings{wang2021realesrgan,
    author    = {Xintao Wang and Liangbin Xie and Chao Dong and Ying Shan},
    title     = {Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data},
    booktitle = {International Conference on Computer Vision Workshops (ICCVW)},
    date      = {2021}
}

πŸ“§ Contact

If you have any question, please email [email protected] or [email protected].

Comments
  • problem running on aws

    problem running on aws

    I downloaded the ubuntu zip on a g3s.xlarge and the result is a black image. Is the zip missing files?

    
    ./realesrgan-ncnn-vulkan-v0.2.0-ubuntu/realesrgan-ncnn-vulkan -i input.jpg -o out/output.jpg -n realesrgan-x4plus -s 4 
    
    [0 Tesla M60]  queueC=0[16]  queueG=0[16]  queueT=1[2]
    [0 Tesla M60]  bugsbn1=0  bugbilz=0  bugcopc=0  bugihfa=0
    [0 Tesla M60]  fp16-p/s/a=1/1/0  int8-p/s/a=1/1/1
    [0 Tesla M60]  subgroup=32  basic=1  vote=1  ballot=1  shuffle=1
    [1 llvmpipe (LLVM 12.0.0, 256 bits)]  queueC=0[1]  queueG=0[1]  queueT=0[1]
    [1 llvmpipe (LLVM 12.0.0, 256 bits)]  bugsbn1=0  bugbilz=0  bugcopc=0  bugihfa=0
    [1 llvmpipe (LLVM 12.0.0, 256 bits)]  fp16-p/s/a=1/1/0  int8-p/s/a=1/1/0
    [1 llvmpipe (LLVM 12.0.0, 256 bits)]  subgroup=8  basic=1  vote=1  ballot=1  shuffle=0
    fopen /home/ubuntu/realesrgan-ncnn-vulkan-v0.2.0-ubuntu/models/realesrgan-x4plus.param failed
    fopen /home/ubuntu/realesrgan-ncnn-vulkan-v0.2.0-ubuntu/models/realesrgan-x4plus.bin failed
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    0.00%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    4.17%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    8.33%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    12.50%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    16.67%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    20.83%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    25.00%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    29.17%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    33.33%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    37.50%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    41.67%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    45.83%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    50.00%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    54.17%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    58.33%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    62.50%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    66.67%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    70.83%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    75.00%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    79.17%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    83.33%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    87.50%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    91.67%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    95.83%
    
    opened by kmulvey 2
  • How do I switch from integrated gpu to nvedia gpu

    How do I switch from integrated gpu to nvedia gpu

    [0 Intel(R) UHD Graphics 630] queueC=0[1] queueG=0[1] queueT=0[1] [0 Intel(R) UHD Graphics 630] bugsbn1=0 bugbilz=3 bugcopc=0 bugihfa=0 [0 Intel(R) UHD Graphics 630] fp16-p/s/a=1/1/1 int8-p/s/a=1/1/1 [0 Intel(R) UHD Graphics 630] subgroup=32 basic=1 vote=1 ballot=1 shuffle=1

    When upscaling images it only uses integrated gpu I want to use my gtx 1650 how do I switch this?

    opened by csAshish 0
  • in directory mode, option to skip if destination already exist

    in directory mode, option to skip if destination already exist

    if you stop the upscaler while processing a directory and you have to restart it, it will start from the beginning and overwrite existing files

    overwriting in file mode is fine but should be an option for direcotry mode ... so I propose a flag to disable overwrite and skip if exist

    opened by 6543 0
  • models: consider adding into README how to get them.

    models: consider adding into README how to get them.

    Hey,

    Please consider adding to README a section how to get the pre-trained model files. Currently you'd need to extract them from the following links

    • https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesrgan-ncnn-vulkan-20220424-ubuntu.zip
    • https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth
    • https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth

    It took me a moment to figure out how to get a hold of them and I suspect many others would face similar challenge.

    opened by slashbeast 0
  • Segfault realesrnet-x4plus

    Segfault realesrnet-x4plus

    %  ./realesrgan-ncnn-vulkan -i FdLbqKcWIAAaCeY.jpeg  -o FdLbqKcWIAAaCeY.png -n realesrnet-x4plus
    zsh: segmentation fault  ./realesrgan-ncnn-vulkan -i FdLbqKcWIAAaCeY.jpeg -o FdLbqKcWIAAaCeY.png -n 
    
    opened by atomical 1
Owner
Xintao
Researcher at Tencent ARC Lab, (Applied Research Center)
Xintao
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training pro

Yang Wenhan 44 Dec 06, 2022
Task-related Saliency Network For Few-shot learning

Task-related Saliency Network For Few-shot learning This is an official implementation in Tensorflow of TRSN. Abstract An essential cue of human wisdo

1 Nov 18, 2021
Random Walk Graph Neural Networks

Random Walk Graph Neural Networks This repository is the official implementation of Random Walk Graph Neural Networks. Requirements Code is written in

Giannis Nikolentzos 38 Jan 02, 2023
Volumetric parameterization of the placenta to a flattened template

placenta-flattening A MATLAB algorithm for volumetric mesh parameterization. Developed for mapping a placenta segmentation derived from an MRI image t

Mazdak Abulnaga 12 Mar 14, 2022
Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation.

PersonLab This is a Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation. The model predicts heatmaps and vari

OCTI 160 Dec 21, 2022
SIMULEVAL A General Evaluation Toolkit for Simultaneous Translation

SimulEval SimulEval is a general evaluation framework for simultaneous translation on text and speech. Requirement python = 3.7.0 Installation git cl

Facebook Research 48 Dec 28, 2022
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
Pytorch implementation of Nueral Style transfer

Nueral Style Transfer Pytorch implementation of Nueral style transfer algorithm , it is used to apply artistic styles to content images . Content is t

Abhinav 9 Oct 15, 2022
Evaluating saliency methods on artificial data with different background types

Evaluating saliency methods on artificial data with different background types This repository contains the relevant code for the MedNeurips 2021 subm

2 Jul 05, 2022
Kaggle DSTL Satellite Imagery Feature Detection

Kaggle DSTL Satellite Imagery Feature Detection

Konstantin Lopuhin 206 Oct 29, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
Multi-query Video Retreival

Multi-query Video Retreival

Princeton Visual AI Lab 17 Nov 22, 2022
Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal"

Patch-wise Adversarial Removal Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal

4 Oct 12, 2022
A general and strong 3D object detection codebase that supports more methods, datasets and tools (debugging, recording and analysis).

ALLINONE-Det ALLINONE-Det is a general and strong 3D object detection codebase built on OpenPCDet, which supports more methods, datasets and tools (de

Michael.CV 5 Nov 03, 2022
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
Riemannian Convex Potential Maps

Modeling distributions on Riemannian manifolds is a crucial component in understanding non-Euclidean data that arises, e.g., in physics and geology. The budding approaches in this space are limited b

Facebook Research 61 Nov 28, 2022
Negative Interactions for Improved Collaborative Filtering:

Negative Interactions for Improved Collaborative Filtering: Don’t go Deeper, go Higher This notebook provides an implementation in Python 3 of the alg

Harald Steck 21 Mar 05, 2022
ComputerVision - This repository aims at realized easy network architecture

ComputerVision This repository aims at realized easy network architecture Colori

DongDong 4 Dec 14, 2022
An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

Kakao Brain 72 Dec 28, 2022
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

1 Jun 02, 2022