Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Overview

Physion: Evaluating Physical Prediction from Vision in Humans and Machines

Animation of the 8 scenarios

This repo contains code and data to reproduce the results in our paper, Physion: Evaluating Physical Prediction from Vision in Humans and Machines. Please see below for details about how to download the Physion dataset, replicate our modeling & human experiments, and statistical analyses to reproduce our results.

  1. Downloading the Physion dataset
  2. Dataset generation
  3. Modeling experiments
  4. Human experiments
  5. Comparing models and humans

Downloading the Physion dataset

Downloading the Physion test set (a.k.a. stimuli)

PhysionTest-Core (270 MB)

PhysionTest-Core is all you need to evaluate humans and models on exactly the same test stimuli used in our paper.

It contains eight directories, one for each scenario type (e.g., collide, contain, dominoes, drape, drop, link, roll, support).

Each of these directories contains three subdirectories:

  • maps: Contains PNG segmentation maps for each test stimulus, indicating location of agent object in red and patient object in yellow.
  • mp4s: Contains the MP4 video files presented to human participants. The agent and patient objects appear in random colors.
  • mp4s-redyellow: Contains the MP4 video files passed into models. The agent and patient objects consistently appear in red and yellow, respectively.

Download URL: https://physics-benchmarking-neurips2021-dataset.s3.amazonaws.com/Physion.zip.

PhysionTest-Complete (380 GB)

PhysionTest-Complete is what you want if you need more detailed metadata for each test stimulus.

Each stimulus is encoded in an HDF5 file containing comprehensive information regarding depth, surface normals, optical flow, and segmentation maps associated with each frame of each trial, as well as other information about the physical states of objects at each time step.

Download URL: https://physics-benchmarking-neurips2021-dataset.s3.amazonaws.com/PhysionTestHDF5.tar.gz.

You can also download the testing data for individual scenarios from the table in the next section.

Downloading the Physion training set

Downloading PhysionTrain-Dynamics

PhysionTrain-Dynamics contains the full dataset used to train the dynamics module of models benchmarked in our paper. It consists of approximately 2K stimuli per scenario type.

Download URL (770 MB): https://physics-benchmarking-neurips2021-dataset.s3.amazonaws.com/PhysionTrainMP4s.tar.gz

Downloading PhysionTrain-Readout

PhysionTrain-Readout contains a separate dataset used for training the object-contact prediction (OCP) module for models pretrained on the PhysionTrain-Dynamics dataset. It consists of 1K stimuli per scenario type.

The agent and patient objects in each of these readout stimuli consistently appear in red and yellow, respectively (as in the mp4s-redyellow examples from PhysionTest-Core above).

NB: Code for using these readout sets to benchmark any pretrained model (not just models trained on the Physion training sets) will be released prior to publication.

Download URLs for complete PhysionTrain-Dynamics and PhysionTrain-Readout:

Scenario Dynamics Training Set Readout Training Set Test Set
Dominoes Dominoes_dynamics_training_HDF5s Dominoes_readout_training_HDF5s Dominoes_testing_HDF5s
Support Support_dynamics_training_HDF5s Support_readout_training_HDF5s Support_testing_HDF5s
Collide Collide_dynamics_training_HDF5s Collide_readout_training_HDF5s Collide_testing_HDF5s
Contain Contain_dynamics_training_HDF5s Contain_readout_training_HDF5s Contain_testing_HDF5s
Drop Drop_dynamics_training_HDF5s Drop_readout_training_HDF5s Drop_testing_HDF5s
Roll Roll_dynamics_training_HDF5s Roll_readout_training_HDF5s Roll_testing_HDF5s
Link Link_dynamics_training_HDF5s Link_readout_training_HDF5s Link_testing_HDF5s
Drape Drape_dynamics_training_HDF5s Drape_readout_training_HDF5s Drape_testing_HDF5s

Dataset generation

This repo depends on outputs from tdw_physics.

Specifically, tdw_physics is used to generate the dataset of physical scenarios (a.k.a. stimuli), including both the training datasets used to train physical-prediction models, as well as test datasets used to measure prediction accuracy in both physical-prediction models and human participants.

Instructions for using the ThreeDWorld simulator to regenerate datasets used in our work can be found here. Links for downloading the Physion testing, training, and readout fitting datasets can be found here.

Modeling experiments

The modeling component of this repo depends on the physopt repo. The physopt repo implements an interface through which a wide variety of physics prediction models from the literature (be they neural networks or otherwise) can be adapted to accept the inputs provided by our training and testing datasets and produce outputs for comparison with our human measurements.

The physopt also contains code for model training and evaluation. Specifically, physopt implements three train/test procols:

  • The only protocol, in which each candidate physics model architecture is trained -- using that model's native loss function as specified by the model's authors -- separately on each of the scenarios listed above (e.g. "dominoes", "support", &c). This produces eight separately-trained models per candidate architecture (one for each scenario). Each of these separate models are then tested in comparison to humans on the testing data for that scenario.
  • A all protocol, in which each candidate physics architecture is trained on mixed data from all of the scenarios simultaneously (again, using that model's native loss function). This single model is then tested and compared to humans separately on each scenario.
  • A all-but-one protocol, in which each candidate physics architecture is trained on mixed data drawn for all but one scenario -- separately for all possible choices of the held-out scenario. This produces eight separately-trained models per candidate architecture (one for each held-out scenario). Each of these separate models are then tested in comparison to humans on the testing data for that scenario.

Results from each of the three protocols are separately compared to humans (as described below in the section on comparison of humans to models). All model-human comparisons are carried using a representation-learning paradigm, in which models are trained on their native loss functions (as encoded by the original authors of the model). Trained models are then evaluated on the specific physion red-object-contacts-yellow-zone prediction task. This evaluation is carried by further training a "readout", implemented as a linear logistic regression. Readouts are always trained in a per-scenario fashion.

Currently, physopt implements the following specific physics prediction models:

Model Name Our Code Link Original Paper Description
SVG Denton and Fergus 2018 Image-like latent
OP3 Veerapaneni et. al. 2020
CSWM Kipf et. al. 2020
RPIN Qi et. al. 2021
pVGG-mlp
pVGG-lstm
pDEIT-mlp Touvron et. al. 2020
pDEIT-lstm
GNS Sanchez-Gonzalez et. al. 2020
GNS-R
DPI Li et. al. 2019

Human experiments

This repo contains code to conduct the human behavioral experiments reported in this paper, as well as analyze the resulting data from both human and modeling experiments.

The details of the experimental design and analysis plan are documented in our study preregistration contained within this repository. The format for this preregistration is adapted from the templates provided by the Open Science Framework for our studies, and put under the same type of version control as the rest of the codebase for this project.

Here is what each main directory in this repo contains:

  • experiments: This directory contains code to run the online human behavioral experiments reported in this paper. More detailed documentation of this code can be found in the README file nested within the experiments subdirectory.
  • analysis (aka notebooks): This directory contains our analysis jupyter/Rmd notebooks. This repo assumes you have also imported model evaluation results from physopt.
  • results: This directory contains "intermediate" results of modeling/human experiments. It contains three subdirectories: csv, plots, and summary.
    • /results/csv/ contains csv files containing tidy dataframes with "raw" data.
    • /results/plots/ contains .pdf/.png plots, a selection of which are then polished and formatted for inclusion in the paper using Adobe Illustrator.
    • Important: Before pushing any csv files containing human behavioral data to a public code repository, triple check that this data is properly anonymized. This means no bare AMT Worker ID's or Prolific participant IDs.
  • stimuli: This directory contains any download/preprocessing scripts for data (a.k.a. stimuli) that are the inputs to human behavioral experiments. This repo assumes you have generated stimuli using tdw_physics. This repo uses code in this directory to upload stimuli to AWS S3 and generate metadata to control the timeline of stimulus presentation in the human behavioral experiments.
  • utils: This directory is meant to contain any files containing general helper functions.

Comparing models and humans

The results reported in this paper can be reproduced by running the Jupyter notebooks contained in the analysis directory.

  1. Downloading results. To download the "raw" human and model prediction behavior, please navigate to the analysis directory and execute the following command at the command line: python download_results.py. This script will fetch several CSV files and download them to subdirectories within results/csv. If this does not work, please download this zipped folder (csv) and move it to the results directory: https://physics-benchmarking-neurips2021-dataset.s3.amazonaws.com/model_human_results.zip.
  2. Reproducing analyses. To reproduce the key analyses reported in the paper, please run the following notebooks in this sequence:
    • summarize_human_model_behavior.ipynb: The purpose of this notebook is to:
      • Apply preprocessing to human behavioral data
      • Visualize distribution and compute summary statistics over human physical judgments
      • Visualize distribution and compute summary statistics over model physical judgments
      • Conduct human-model comparisons
      • Output summary CSVs that can be used for further statistical modeling & create publication-quality visualizations
    • inference_human_model_behavior.ipynb: The purpose of this notebook is to:
      • Visualize human and model prediction accuracy (proportion correct)
      • Visualize average-human and model agreement (RMSE)
      • Visualize human-human and model-human agreement (Cohen's kappa)
      • Compare performance between models
    • paper_plots.ipynb: The purpose of this notebook is to create publication-quality figures for inclusion in the paper.
Owner
Cognitive Tools Lab
reverse engineering the human cognitive toolkit
Cognitive Tools Lab
iris - Open Source Photos Platform Powered by PyTorch

Open Source Photos Platform Powered by PyTorch. Submission for PyTorch Annual Hackathon 2021.

Omkar Prabhu 137 Sep 10, 2022
Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis

HAABSAStar Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis". This project builds on the code from https://gith

1 Sep 14, 2020
Fewshot-face-translation-GAN - Generative adversarial networks integrating modules from FUNIT and SPADE for face-swapping.

Few-shot face translation A GAN based approach for one model to swap them all. The table below shows our priliminary face-swapping results requiring o

768 Dec 24, 2022
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)

Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019) Introduction Official implementation of Adaptive Pyramid Context Network

21 Nov 09, 2022
Deep Learning for Morphological Profiling

Deep Learning for Morphological Profiling An end-to-end implementation of a ML System for morphological profiling using self-supervised learning to di

Danielh Carranza 0 Jan 20, 2022
[CVPR 2021] MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition

MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition (CVPR 2021) arXiv Prerequisite PyTorch = 1.2.0 Python3 torchvision PIL argpar

51 Nov 11, 2022
This project uses ViT to perform image classification tasks on DATA set CIFAR10.

Vision-Transformer-Multiprocess-DistributedDataParallel-Apex Introduction This project uses ViT to perform image classification tasks on DATA set CIFA

Kaicheng Yang 3 Jun 03, 2022
Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)

Cross Domain Facial Expression Recognition Benchmark Implementation of papers: Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchm

89 Dec 09, 2022
EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit

EvoJAX: Hardware-Accelerated Neuroevolution EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit. Built on top of the JA

Google 598 Jan 07, 2023
Physical Anomalous Trajectory or Motion (PHANTOM) Dataset

Physical Anomalous Trajectory or Motion (PHANTOM) Dataset Description This dataset contains the six different classes as described in our paper[]. The

0 Dec 16, 2021
3 Apr 20, 2022
Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples"

KSTER Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples" [paper]. Usage Download the processed datas

jiangqn 23 Nov 24, 2022
Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Jonas KΓΆhler 893 Dec 28, 2022
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022
A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

Zain 1 Feb 01, 2022
πŸš— INGI Dakar 2K21 - Be the first one on the finish line ! πŸš—

πŸš— INGI Dakar 2K21 - Be the first one on the finish line ! πŸš— This year's first semester Club Info challenge will put you at the head of a car racing

ClubINFO INGI (UCLouvain) 6 Dec 10, 2021
CL-Gym: Full-Featured PyTorch Library for Continual Learning

CL-Gym: Full-Featured PyTorch Library for Continual Learning CL-Gym is a small yet very flexible library for continual learning research and developme

Iman Mirzadeh 36 Dec 25, 2022
Ego4d dataset repository. Download the dataset, visualize, extract features & example usage of the dataset

Ego4D EGO4D is the world's largest egocentric (first person) video ML dataset and benchmark suite, with 3,600 hrs (and counting) of densely narrated v

Meta Research 118 Jan 07, 2023
A3C LSTM Atari with Pytorch plus A3G design

NEWLY ADDED A3G A NEW GPU/CPU ARCHITECTURE OF A3C FOR SUBSTANTIALLY ACCELERATED TRAINING!! RL A3C Pytorch NEWLY ADDED A3G!! New implementation of A3C

David Griffis 532 Jan 02, 2023