Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Related tags

Deep LearningSafeDRL
Overview

Getting Started

This repository contains the code used for the following publications:

  • Probabilistic Guarantees for Safe Deep Reinforcement Learning (FORMATS 2020)
  • Verifying Reinforcement Learning up to Infinity (IJCAI 2021)
  • Verified Probabilistic Policies for Deep Reinforcement Learning (NFM 2022)

These instructions will help with setting up the project

Prerequisites

Create a virtual environment with conda:

conda env create -f environment.yml
conda activate safedrl

This will take care of installing all the dependencies needed by python

In addition, download PRISM from the following link: https://github.com/phate09/prism

Ensure you have Gradle installed (https://gradle.org/install/)

Running the code

Before running any code, in a new terminal go to the PRISM project folder and run

gradle run

This will enable the communication channel between PRISM and the rest of the repository

Probabilistic Guarantees for Safe Deep Reinforcement Learning (FORMATS 2020)

Training

Run the train_pendulum.py inside agents/dqn to train the agent on the inverted pendulum problem and record the location of the saved agent

Analysis

Run the domain_analysis_sym.py inside runnables/symbolic/dqn changing paths to point to the saved network

Verifying Reinforcement Learning up to Infinity (IJCAI 2021)

####Paper results ## download and unzip experiment_collection_final.zip in the 'save' directory

run tensorboard --logdir=./save/experiment_collection_final

(results for the output range analysis experiments are in experiment_collection_ora_final.zip)

####Train neural networks from scratch ## run either:

  • training/tune_train_PPO_bouncing_ball.py
  • training/tune_train_PPO_car.py
  • training/tune_train_PPO_cartpole.py

####Check safety of pretrained agents ## download and unzip pretrained_agents.zip in the 'save' directory

run verification/run_tune_experiments.py

(to monitor the progress of the algorithm run tensorboard --logdir=./save/experiment_collection_final)

The results in tensorboard can be filtered using regular expressions (eg. "bouncing_ball.* template: 0") on the search bar on the left:

The name of the experiment contains the name of the problem (bouncing_ball, cartpole, stopping car), the amount of adversarial noise ("eps", only for stopping_car), the time steps length for the dynamics of the system ("tau", only for cartpole) and the choice of restriction in order of complexity (0 being box, 1 being the chosen template, and 2 being octagon).

The table in the paper is filled by using some of the metrics reported in tensorboard:

  • max_t: Avg timesteps
  • seen: Avg polyhedra
  • time_since_restore: Avg clock time (s)

alt text

Verified Probabilistic Policies for Deep Reinforcement Learning (NFM 2022)

Owner
Edoardo Bacci
Edoardo Bacci
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022
Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch

Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch Reference Paper URL Author: Yi Tay, Dara Bahri, Donald Metzler

Myeongjun Kim 66 Nov 30, 2022
Multiview Dataset Toolkit

Multiview Dataset Toolkit Using multi-view cameras is a natural way to obtain a complete point cloud. However, there is to date only one multi-view 3D

11 Dec 22, 2022
Tool for working with Y-chromosome data from YFull and FTDNA

ycomp ycomp is a tool for working with Y-chromosome data from YFull and FTDNA. Run ycomp -h for information on how to use the program. Installation Th

Alexander Regueiro 2 Jun 18, 2022
A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Dying Light 2 PAKFile Utility A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers. This tool aims to make PAKFile (.pak files) modding a

RHQ Online 12 Aug 26, 2022
Alleviating Over-segmentation Errors by Detecting Action Boundaries

Alleviating Over-segmentation Errors by Detecting Action Boundaries Forked from ASRF offical code. This repo is the a implementation of replacing orig

13 Dec 12, 2022
A two-stage U-Net for high-fidelity denoising of historical recordings

A two-stage U-Net for high-fidelity denoising of historical recordings Official repository of the paper (not submitted yet): E. Moliner and V. Välimäk

Eloi Moliner Juanpere 57 Jan 05, 2023
A list of multi-task learning papers and projects.

This page contains a list of papers on multi-task learning for computer vision. Please create a pull request if you wish to add anything. If you are interested, consider reading our recent survey pap

svandenh 297 Dec 17, 2022
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 09, 2023
The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift

TwoStageAlign The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift Pa

Shi Guo 32 Dec 15, 2022
A Learning-based Camera Calibration Toolbox

Learning-based Camera Calibration A Learning-based Camera Calibration Toolbox Paper The pdf file can be found here. @misc{zhang2022learningbased,

Eason 14 Dec 21, 2022
(3DV 2021 Oral) Filtering by Cluster Consistency for Large-Scale Multi-Image Matching

Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching (3DV 2021 Oral Presentation) Filtering by Cluster Consistency (FCC) is a very

Yunpeng Shi 11 Sep 28, 2022
Code for Subgraph Federated Learning with Missing Neighbor Generation (NeurIPS 2021)

To run the code Unzip the package to your local directory; Run 'pip install -r requirements.txt' to download required packages; Open file ~/nips_code/

32 Dec 26, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
This a classic fintech problem that introduces real life difficulties such as data imbalance. Check out the notebook to find out more!

Credit Card Fraud Detection Introduction Online transactions have become a crucial part of any business over the years. Many of those transactions use

Jonathan Hasbani 0 Jan 20, 2022
Official PyTorch Code of GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection (CVPR 2021)

GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Mo

Abhinav Kumar 76 Jan 02, 2023
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multipl

Webis 42 Aug 14, 2022
All materials of Cassandra Event, Udyam'22

Cassandra 2022 Workspace Workshop Materials Workshop-1 Workshop-2 Workshop-3 Workshop-4 Assignments Assignment-1 Assignment-2 Assignment-3 Resources P

36 Dec 31, 2022
Source code for Transformer-based Multi-task Learning for Disaster Tweet Categorisation (UCD's participation in TREC-IS 2020A, 2020B and 2021A).

Source code for "UCD participation in TREC-IS 2020A, 2020B and 2021A". *** update at: 2021/05/25 This repo so far relates to the following work: Trans

Congcong Wang 4 Oct 19, 2021
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021