Alleviating Over-segmentation Errors by Detecting Action Boundaries

Overview

Alleviating Over-segmentation Errors by Detecting Action Boundaries

Forked from ASRF offical code. This repo is the a implementation of replacing original MSTCN backbone with ASFormer.

Dataset

GTEA, 50Salads, Breakfast

You can download features and G.T. of these datasets from this repository.
Or you can extract their features by yourself using this repository

Requirements

  • Python >= 3.7
  • pytorch => 1.0
  • torchvision
  • pandas
  • numpy
  • Pillow
  • PyYAML

You can download packages using requirements.txt.

pip install -r requirements.txt

Directory Structure

root ── csv/
      ├─ libs/
      ├─ imgs/
      ├─ result/
      ├─ utils/
      ├─ dataset ─── 50salads/...
      │           ├─ breakfast/...
      │           └─ gtea ─── features/
      │                    ├─ groundTruth/
      │                    ├─ splits/
      │                    └─ mapping.txt
      ├.gitignore
      ├ README.md
      ├ requirements.txt
      ├ save_pred.py
      ├ train.py
      └ evaluate.py
  • csv directory contains csv files which are necessary for training and testing.
  • An image in imgs is one from PascalVOC. This is used for an color palette to visualize outputs.
  • Experimental results are stored in results directory.
  • Scripts in utils are directly irrelevant with train.py and evaluate.py but necessary for converting labels, generating configurations, visualization and so on.
  • Scripts in libs are necessary for training and evaluation. e.g.) models, loss functions, dataset class and so on.
  • The datasets downloaded from this repository are stored in dataset. You can put them in another directory, but need to specify the path in configuration files.
  • train.py is a script for training networks.
  • eval.py is a script for evaluation.
  • save_pred.py is for saving predictions from models.

How to use

Please also check scripts/experiment.sh, which runs all the following experimental codes.

  1. First of all, please download features and G.T. of these datasets from this repository.

  2. Features and groundTruth labels need to be converted to numpy array. This repository does not provide boundary groundtruth labels, so you have to generate them, too. Please run the following command. [DATASET_DIR] is the path to your dataset directory.

    python utils/generate_gt_array.py --dataset_dir [DATASET_DIR]
    python utils/generate_boundary_array.py --dataset_dir [DATASET_DIR]
  3. In this implementation, csv files are used for keeping information of training or test data. You can run the below command to generate csv files, but we suggest to use the csv files provided in the repo.

    python utils/make_csv_files.py --dataset_dir [DATASET_DIR]
  4. You can automatically generate experiment configuration files by running the following command. This command generates directories and configuration files in root_dir. However, we suggest to use the config files provided in the repo.

    python utils/make_config.py --root_dir ./result/50salads --dataset 50salads --split 1 2 3 4 5
    python utils/make_config.py --root_dir ./result/gtea --dataset gtea --split 1 2 3 4
    python utils/make_config.py --root_dir ./result/breakfast --dataset breakfast --split 1 2 3 4

    If you want to add other configurations, please add command-line options like:

    python utils/make_config.py --root_dir ./result/50salads --dataset 50salads --split 1 2 3 4 5 --learning_rate 0.1 0.01 0.001 0.0001

    Please see libs/config.py about configurations.

  5. You can train and evaluate models specifying a configuration file generated in the above process like, we train 80 epochs for 50salads dataset in the config.yaml.

    python train.py ./result/50salads/dataset-50salads_split-1/config.yaml
    python evaluate.py ./result/50salads/dataset-50salads_split-1/config.yaml test
  6. You can also save model predictions as numpy array by running:

    python save_pred.py ./result/50salads/dataset-50salads_split-1/config.yaml test
  7. If you want to visualize the saved model predictions, please run:

    python utils/convert_arr2img.py ./result/50salads/dataset-50salads_split1/predictions

License

This repository is released under the MIT License.

Citation

@inproceedings{chinayi_ASformer,
author={Fangqiu Yi and Hongyu Wen and Tingting Jiang}, booktitle={The British Machine Vision Conference (BMVC)},
title={ASFormer: Transformer for Action Segmentation}, year={2021},
}

Reference

  • Yuchi Ishikawa, Seito Kasai, Yoshimitsu Aoki, Hirokatsu Kataoka, "Alleviating Over-segmentation Errors by Detecting Action Boundaries" in WACV 2021.
  • Colin Lea et al., "Temporal Convolutional Networks for Action Segmentation and Detection", in CVPR2017 (paper)
  • Yazan Abu Farha et al., "MS-TCN: Multi-Stage Temporal Convolutional Network for Action Segmentation", in CVPR2019 (paper, code)
Anonymous implementation of KSL

k-Step Latent (KSL) Implementation of k-Step Latent (KSL) in PyTorch. Representation Learning for Data-Efficient Reinforcement Learning [Paper] Code i

1 Nov 10, 2021
✨风纪委员会自动投票脚本,利用Github Action帮你进行裁决操作(为了让其他风纪委员有案件可判,本程序从中午12点才开始运行,有需要请自己修改运行时间)

风纪委员会自动投票 本脚本通过使用Github Action来实现B站风纪委员的自动投票功能,喜欢请给我点个STAR吧! 如果你不是风纪委员,在符合风纪委员申请条件的情况下,本脚本会自动帮你申请 投票时间是早上八点,如果有需要请自行修改.github/workflows/Judge.yml中的时间,

Pesy Wu 25 Feb 17, 2021
Interactive Image Segmentation via Backpropagating Refinement Scheme

Won-Dong Jang and Chang-Su Kim, Interactive Image Segmentation via Backpropagating Refinement Scheme, CVPR 2019

Won-Dong Jang 85 Sep 15, 2022
A Protein-RNA Interface Predictor Based on Semantics of Sequences

PRIP PRIP:A Protein-RNA Interface Predictor Based on Semantics of Sequences installation gensim==3.8.3 matplotlib==3.1.3 xgboost==1.3.3 prettytable==2

李优 0 Mar 25, 2022
Code for T-Few from "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning"

T-Few This repository contains the official code for the paper: "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learni

220 Dec 31, 2022
Speed-Test - You can check your intenet speed using this tool

Speed-Test Tool By Hez_X AVAILABLE ON : Termux & Kali linux & Ubuntu (Linux E

Hez-X 3 Feb 17, 2022
PyTorch implementation of Octave Convolution with pre-trained Oct-ResNet and Oct-MobileNet models

octconv.pytorch PyTorch implementation of Octave Convolution in Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octa

Duo Li 273 Dec 18, 2022
PanopticBEV - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images

Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images This r

63 Dec 16, 2022
Official PyTorch repo for JoJoGAN: One Shot Face Stylization

JoJoGAN: One Shot Face Stylization This is the PyTorch implementation of JoJoGAN: One Shot Face Stylization. Abstract: While there have been recent ad

1.3k Dec 29, 2022
[ECCV2020] Content-Consistent Matching for Domain Adaptive Semantic Segmentation

[ECCV20] Content-Consistent Matching for Domain Adaptive Semantic Segmentation This is a PyTorch implementation of CCM. News: GTA-4K list is available

Guangrui Li 88 Aug 25, 2022
An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.

ImageCompressionSimulation An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects o

James Park 1 Dec 11, 2021
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

Ibai Gorordo 15 Oct 14, 2022
The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

AICITY2021_Track2_DMT The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop. Introduction

Hao Luo 91 Dec 21, 2022
Official code of the paper "Expanding Low-Density Latent Regions for Open-Set Object Detection" (CVPR 2022)

OpenDet Expanding Low-Density Latent Regions for Open-Set Object Detection (CVPR2022) Jiaming Han, Yuqiang Ren, Jian Ding, Xingjia Pan, Ke Yan, Gui-So

csuhan 64 Jan 07, 2023
Tensorflow2.0 🍎🍊 is delicious, just eat it! 😋😋

How to eat TensorFlow2 in 30 days ? 🔥 🔥 Click here for Chinese Version(中文版) 《10天吃掉那只pyspark》 🚀 github项目地址: https://github.com/lyhue1991/eat_pyspark

lyhue1991 9.7k Jan 01, 2023
Semi-supervised Stance Detection of Tweets Via Distant Network Supervision

SANDS This is an annonymous repository containing code and data necessary to reproduce the results published in "Semi-supervised Stance Detection of T

2 Sep 22, 2022
A modular domain adaptation library written in PyTorch.

A modular domain adaptation library written in PyTorch.

Kevin Musgrave 225 Dec 29, 2022
MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution (CVPR2021)

MASA-SR Official PyTorch implementation of our CVPR2021 paper MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Re

DV Lab 126 Dec 20, 2022
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
The official repository for "Score Transformer: Generating Musical Scores from Note-level Representation" (MMAsia '21)

Score Transformer This is the official repository for "Score Transformer": Score Transformer: Generating Musical Scores from Note-level Representation

22 Dec 22, 2022