3rd Place Solution for ICCV 2021 Workshop SSLAD Track 3A - Continual Learning Classification Challenge

Overview

Online Continual Learning via Multiple Deep Metric Learning and Uncertainty-guided Episodic Memory Replay

3rd Place Solution for ICCV 2021 Workshop SSLAD Track 3A - Continual Learning Classification

Technical Report slides
video

Description

Official implementation of our solution (3rd place) for ICCV 2021 Workshop Self-supervised Learning for Next-Generation Industry-level Autonomous Driving (SSLAD) Track 3A - Continual Learning Classification using "Online Continual Learning via Multiple Deep Metric Learning and Uncertainty-guided Episodic Memory Replay".

How to run

First, install dependencies

# clone project   
git clone https://github.com/mrifkikurniawan/sslad.git

# install project   
cd sslad 
pip3 install -r requirements.txt   

Next, preparing the dataset via links below.

Next, run training.

# run training module with our proposed cl strategy
python3.9 classification.py \
--config configs/cl_strategy.yaml \
--name {path/to/log} \
--root {root/of/your/dataset} \
--num_workers {num workers} \
--gpu_id {your-gpu-id} \
--comment {any-comments} 
--store \

or see the train.sh for the example.

Experiments Results

Method Val AMCA Test AMCA
Baseline (Uncertainty Replay)* 57.517 -
+ Multi-step Lr Scheduler* 59.591 (+2.07) -
+ Soft Labels Retrospection* 59.825 (+0.23) -
+ Contrastive Learning* 60.363 (+0.53) 59.68
+ Supervised Contrastive Learning* 61.49 (+1.13) -
+ Change backbone to ResNet50-D* 62.514 (+1.02) -
+ Focal loss* 62.71 (+0.19) -
+ Cost Sensitive Cross Entropy 63.33 (+0.62) -
+ Class Balanced Focal loss* 64.01 (+1.03) 64.53 (+4.85)
+ Head Fine-tuning with Class Balanced Replay 65.291 (+1.28) 62.58 (-1.56)
+ Head Fine-tuning with Soft Labels Retrospection 66.116 (+0.83) 62.97 (+0.39)

*Applied to our final method.

File overview

classification.py: Driver code for the classification subtrack. There are a few things that can be changed here, such as the model, optimizer and loss criterion. There are several arguments that can be set to store results etc. (Run classification.py --help to get an overview, or check the file.)

class_strategy.py: Provides an empty plugin. Here, you can define your own strategy, by implementing the necessary callbacks. Helper methods and classes can be ofcourse implemented as pleased. See here for examples of strategy plugins.

data_intro.ipynb: In this notebook the stream of data is further introduced and explained. Feel free to experiment with the dataset to get a good feeling of the challenge.

Note: not all callbacks have to be implemented, you can just delete those that you don't need.

classification_util.py & haitain_classification.py: These files contain helper code for dataloading etc. There should be no reason to change these.

Owner
Rifki Kurniawan
MS student at Xi'an Jiaotong University; Artificial Intelligence Engineer at Nodeflux
Rifki Kurniawan
Official code base for the poster "On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation" published in NeurIPS 2021 Workshop (SVRHM)

Self-Supervised Learning (SimCLR) with Biological Plausible Image Augmentations Official code base for the poster "On the use of Cortical Magnificatio

Binxu 8 Aug 17, 2022
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
Jupyter notebooks for using & learning Keras

deep-learning-with-keras-notebooks 這個github的repository主要是個人在學習Keras的一些記錄及練習。希望在學習過程中發現到一些好的資訊與範例也可以對想要學習使用 Keras來解決問題的同好,或是對深度學習有興趣的在學學生可以有一些方便理解與上手範例

ErhWen Kuo 2.1k Dec 27, 2022
Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow.

Denoised-Smoothing-TF Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow. Denoised Smoothing is

Sayak Paul 19 Dec 11, 2022
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
Pytorch Geometric Tutorials

Pytorch Geometric Tutorials

Antonio Longa 648 Jan 08, 2023
Bayesian Optimization Library for Medical Image Segmentation.

bayesmedaug: Bayesian Optimization Library for Medical Image Segmentation. bayesmedaug optimizes your data augmentation hyperparameters for medical im

Şafak Bilici 7 Feb 10, 2022
ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation

ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation This repository provides a PyTorch implementation of ADSPM. Requirements Pyth

24 Jul 24, 2022
Json2Xml tool will help you convert from json COCO format to VOC xml format in Object Detection Problem.

JSON 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Json2Xml t

Nguyễn Trường Lâu 6 Aug 22, 2022
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.

THUNLP 37 Oct 30, 2022
PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.

DosGAN-PyTorch PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation

40 Nov 30, 2022
基于AlphaPose的TensorRT加速

1. Requirements CUDA 11.1 TensorRT 7.2.2 Python 3.8.5 Cython PyTorch 1.8.1 torchvision 0.9.1 numpy 1.17.4 (numpy版本过高会出报错 this issue ) python-package s

52 Dec 06, 2022
Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

High-Performance Brain-to-Text Communication via Handwriting Overview This repo is associated with this manuscript, preprint and dataset. The code can

Francis R. Willett 306 Jan 03, 2023
TensorFlow implementation of Deep Reinforcement Learning papers

Deep Reinforcement Learning in TensorFlow TensorFlow implementation of Deep Reinforcement Learning papers. This implementation contains: [1] Playing A

Taehoon Kim 1.6k Jan 03, 2023
LyaNet: A Lyapunov Framework for Training Neural ODEs

LyaNet: A Lyapunov Framework for Training Neural ODEs Provide the model type--config-name to train and test models configured as those shown in the pa

Ivan Dario Jimenez Rodriguez 21 Nov 21, 2022
Code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizability of Cross-Task Neural Architecture Search.

TransNAS-Bench-101 This repository contains the publishable code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizabili

Yawen Duan 17 Nov 20, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style

Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style [NeurIPS 2021] Official code to reproduce the results and data p

Yash Sharma 27 Sep 19, 2022
PyTorch implementation of the Pose Residual Network (PRN)

Pose Residual Network This repository contains a PyTorch implementation of the Pose Residual Network (PRN) presented in our ECCV 2018 paper: Muhammed

Salih Karagoz 289 Nov 28, 2022
Real-time analysis of intracranial neurophysiology recordings.

py_neuromodulation Click this button to run the "Tutorial ML with py_neuro" notebooks: The py_neuromodulation toolbox allows for real time capable pro

Interventional Cognitive Neuromodulation - Neumann Lab Berlin 15 Nov 03, 2022