3rd Place Solution for ICCV 2021 Workshop SSLAD Track 3A - Continual Learning Classification Challenge

Overview

Online Continual Learning via Multiple Deep Metric Learning and Uncertainty-guided Episodic Memory Replay

3rd Place Solution for ICCV 2021 Workshop SSLAD Track 3A - Continual Learning Classification

Technical Report slides
video

Description

Official implementation of our solution (3rd place) for ICCV 2021 Workshop Self-supervised Learning for Next-Generation Industry-level Autonomous Driving (SSLAD) Track 3A - Continual Learning Classification using "Online Continual Learning via Multiple Deep Metric Learning and Uncertainty-guided Episodic Memory Replay".

How to run

First, install dependencies

# clone project   
git clone https://github.com/mrifkikurniawan/sslad.git

# install project   
cd sslad 
pip3 install -r requirements.txt   

Next, preparing the dataset via links below.

Next, run training.

# run training module with our proposed cl strategy
python3.9 classification.py \
--config configs/cl_strategy.yaml \
--name {path/to/log} \
--root {root/of/your/dataset} \
--num_workers {num workers} \
--gpu_id {your-gpu-id} \
--comment {any-comments} 
--store \

or see the train.sh for the example.

Experiments Results

Method Val AMCA Test AMCA
Baseline (Uncertainty Replay)* 57.517 -
+ Multi-step Lr Scheduler* 59.591 (+2.07) -
+ Soft Labels Retrospection* 59.825 (+0.23) -
+ Contrastive Learning* 60.363 (+0.53) 59.68
+ Supervised Contrastive Learning* 61.49 (+1.13) -
+ Change backbone to ResNet50-D* 62.514 (+1.02) -
+ Focal loss* 62.71 (+0.19) -
+ Cost Sensitive Cross Entropy 63.33 (+0.62) -
+ Class Balanced Focal loss* 64.01 (+1.03) 64.53 (+4.85)
+ Head Fine-tuning with Class Balanced Replay 65.291 (+1.28) 62.58 (-1.56)
+ Head Fine-tuning with Soft Labels Retrospection 66.116 (+0.83) 62.97 (+0.39)

*Applied to our final method.

File overview

classification.py: Driver code for the classification subtrack. There are a few things that can be changed here, such as the model, optimizer and loss criterion. There are several arguments that can be set to store results etc. (Run classification.py --help to get an overview, or check the file.)

class_strategy.py: Provides an empty plugin. Here, you can define your own strategy, by implementing the necessary callbacks. Helper methods and classes can be ofcourse implemented as pleased. See here for examples of strategy plugins.

data_intro.ipynb: In this notebook the stream of data is further introduced and explained. Feel free to experiment with the dataset to get a good feeling of the challenge.

Note: not all callbacks have to be implemented, you can just delete those that you don't need.

classification_util.py & haitain_classification.py: These files contain helper code for dataloading etc. There should be no reason to change these.

Owner
Rifki Kurniawan
MS student at Xi'an Jiaotong University; Artificial Intelligence Engineer at Nodeflux
Rifki Kurniawan
Puzzle-CAM: Improved localization via matching partial and full features.

Puzzle-CAM The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".

Sanghyun Jo 150 Nov 14, 2022
Hand tracking demo for DIY Smart Glasses with a remote computer doing the work

CameraStream This is a demonstration that streams the image from smartglasses to a pc, does the hand recognition on the remote pc and streams the proc

Teemu Laurila 20 Oct 13, 2022
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022
An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

0 May 06, 2022
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
TVNet: Temporal Voting Network for Action Localization

TVNet: Temporal Voting Network for Action Localization This repo holds the codes of paper: "TVNet: Temporal Voting Network for Action Localization". P

hywang 5 Jul 26, 2022
Keras code and weights files for popular deep learning models.

Trained image classification models for Keras THIS REPOSITORY IS DEPRECATED. USE THE MODULE keras.applications INSTEAD. Pull requests will not be revi

François Chollet 7.2k Dec 29, 2022
City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces

City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces Paper Temporary GitHub page for City Surfaces paper. More soon! While designing s

14 Nov 10, 2022
Dataloader tools for language modelling

Installation: pip install lm_dataloader Design Philosophy A library to unify lm dataloading at large scale Simple interface, any tokenizer can be inte

5 Mar 25, 2022
the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

EmbedSeg Introduction This repository hosts the version of the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

JugLab 88 Dec 25, 2022
Python inverse kinematics for your robot model based on Pinocchio.

Python inverse kinematics for your robot model based on Pinocchio.

Stéphane Caron 50 Dec 22, 2022
Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022)

Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022) By Shilong Zhang*, Zhuoran Yu*, Liyang Liu*, Xinjiang Wang, Aojun Zhou,

Shilong Zhang 129 Dec 24, 2022
Vehicle direction identification consists of three module detection , tracking and direction recognization.

Vehicle-direction-identification Vehicle direction identification consists of three module detection , tracking and direction recognization. Algorithm

5 Nov 15, 2022
All the essential resources and template code needed to understand and practice data structures and algorithms in python with few small projects to demonstrate their practical application.

Data Structures and Algorithms Python INDEX 1. Resources - Books Data Structures - Reema Thareja competitiveCoding Big-O Cheat Sheet DAA Syllabus Inte

Shushrut Kumar 129 Dec 15, 2022
COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping

COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping Version 1.0 COVINS is an accurate, scalable, and versatile vis

ETHZ V4RL 183 Dec 27, 2022
Unit-Convertor - Unit Convertor Built With Python

Python Unit Converter This project can convert Weigth,length and ... units for y

Mahdis Esmaeelian 1 May 31, 2022
The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"

TimeSformer This is an official pytorch implementation of Is Space-Time Attention All You Need for Video Understanding?. In this repository, we provid

Facebook Research 1k Dec 31, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. Check the unlearning effect

Yige-Li 51 Dec 07, 2022
The official code of Anisotropic Stroke Control for Multiple Artists Style Transfer

ASMA-GAN Anisotropic Stroke Control for Multiple Artists Style Transfer Proceedings of the 28th ACM International Conference on Multimedia The officia

Six_God 146 Nov 21, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022