Vector Quantized Diffusion Model for Text-to-Image Synthesis

Overview

Vector Quantized Diffusion Model for Text-to-Image Synthesis

Due to company policy, I have to set microsoft/VQ-Diffusion to private for now, so I provide the same code here.

Overview

This is the official repo for the paper: Vector Quantized Diffusion Model for Text-to-Image Synthesis.

VQ-Diffusion is based on a VQ-VAE whose latent space is modeled by a conditional variant of the recently developed Denoising Diffusion Probabilistic Model (DDPM). It produces significantly better text-to-image generation results when compared with Autoregressive models with similar numbers of parameters. Compared with previous GAN-based methods, VQ-Diffusion can handle more complex scenes and improve the synthesized image quality by a large margin.

Framework

Requirements

We suggest to use the docker. Also, you may run:

bash install_req.sh

Data Preparing

Microsoft COCO

│MSCOCO_Caption/
├──annotations/
│  ├── captions_train2014.json
│  ├── captions_val2014.json
├──train2014/
│  ├── train2014/
│  │   ├── COCO_train2014_000000000009.jpg
│  │   ├── ......
├──val2014/
│  ├── val2014/
│  │   ├── COCO_val2014_000000000042.jpg
│  │   ├── ......

CUB-200

│CUB-200/
├──images/
│  ├── 001.Black_footed_Albatross/
│  ├── 002.Laysan_Albatross
│  ├── ......
├──text/
│  ├── text/
│  │   ├── 001.Black_footed_Albatross/
│  │   ├── 002.Laysan_Albatross
│  │   ├── ......
├──train/
│  ├── filenames.pickle
├──test/
│  ├── filenames.pickle

ImageNet

│imagenet/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

Pretrained Model

We release four text-to-image pretrained model, trained on Conceptual Caption, MSCOCO, CUB200, and LAION-human datasets. Also, we release the ImageNet pretrained model, and provide the CLIP pretrained model for convenient. These should be put under OUTPUT/pretrained_model/ . These pretrained model file may be large because they are training checkpoints, which contains gradient information, optimizer information, ema model and others.

Besides, we provide the VQVAE models on FFHQ, OpenImages, and imagenet datasets, these model are from Taming Transformer, we provide them here for convenient. Please put them under OUTPUT/pretrained_model/taming_dvae/ .

Inference

To generate image from given text:

from inference_VQ_Diffusion import VQ_Diffusion
VQ_Diffusion_model = VQ_Diffusion(config='OUTPUT/pretrained_model/config_text.yaml', path='OUTPUT/pretrained_model/human_pretrained.pth')
VQ_Diffusion_model.inference_generate_sample_with_condition("a beautiful smiling woman",truncation_rate=0.85, save_root="RESULT",batch_size=4)
VQ_Diffusion_model.inference_generate_sample_with_condition("a woman in yellow dress",truncation_rate=0.85, save_root="RESULT",batch_size=4,fast=2) # for fast inference

You may change human_pretrained.pth to other pretrained model to test different text.

To generate image from given ImageNet class label:

from inference_VQ_Diffusion import VQ_Diffusion
VQ_Diffusion_model = VQ_Diffusion(config='OUTPUT/pretrained_model/config_imagenet.yaml', path='OUTPUT/pretrained_model/imagenet_pretrained.pth')
VQ_Diffusion_model.inference_generate_sample_with_class(407,truncation_rate=0.86, save_root="RESULT",batch_size=4)

Training

First, change the data_root to correct path in configs/coco.yaml or other configs.

Train Text2Image generation on MSCOCO dataset:

python running_command/run_train_coco.py

Train Text2Image generation on CUB200 dataset:

python running_command/run_train_cub.py

Train conditional generation on ImageNet dataset:

python running_command/run_train_imagenet.py

Train unconditional generation on FFHQ dataset:

python running_command/run_train_ffhq.py

Cite VQ-Diffusion

if you find our code helpful for your research, please consider citing:

@article{gu2021vector,
  title={Vector Quantized Diffusion Model for Text-to-Image Synthesis},
  author={Gu, Shuyang and Chen, Dong and Bao, Jianmin and Wen, Fang and Zhang, Bo and Chen, Dongdong and Yuan, Lu and Guo, Baining},
  journal={arXiv preprint arXiv:2111.14822},
  year={2021}
}

Acknowledgement

Thanks to everyone who makes their code and models available. In particular,

License

This project is licensed under the license found in the LICENSE file in the root directory of this source tree.

Microsoft Open Source Code of Conduct

Contact Information

For help or issues using VQ-Diffusion, please submit a GitHub issue. For other communications related to VQ-Diffusion, please contact Shuyang Gu ([email protected]) or Dong Chen ([email protected]).

Owner
Shuyang Gu
Shuyang Gu
Axel - 3D printed robotic hands and they controll with Raspberry Pi and Arduino combo

Axel It's our graduation project about 3D printed robotic hands and they control

0 Feb 14, 2022
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring Code Summary aggregate.py: this script aggr

1 Dec 28, 2021
Implementation of the 😇 Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones

HaloNet - Pytorch Implementation of the Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones. This re

Phil Wang 189 Nov 22, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M

Kevin Lu 1.4k Jan 07, 2023
Visual Tracking by TridenAlign and Context Embedding

Visual Tracking by TridentAlign and Context Embedding (TACT) Test code for "Visual Tracking by TridentAlign and Context Embedding" Janghoon Choi, Juns

Janghoon Choi 32 Aug 25, 2021
Trax — Deep Learning with Clear Code and Speed

Trax — Deep Learning with Clear Code and Speed Trax is an end-to-end library for deep learning that focuses on clear code and speed. It is actively us

Google 7.3k Dec 26, 2022
GAN-generated image detection based on CNNs

GAN-image-detection This repository contains a GAN-generated image detector developed to distinguish real images from synthetic ones. The detector is

Image and Sound Processing Lab 17 Dec 15, 2022
This GitHub repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.'

About Repository This repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.' About Code

Arun Verma 1 Nov 09, 2021
Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences

Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences This repository is an official PyTorch implementation of Neighbor

DIVE Lab, Texas A&M University 8 Jun 12, 2022
DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation

DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation By Qing Xu, Wenting Duan and Na He Requirements pytorch==1.1

Qing Xu 20 Dec 09, 2022
using STGCN to achieve egg classification task

EEG Classification   The task requires us to classify electroencephalography(EEG) into six categories, including human body, human face, animal body,

4 Jun 13, 2022
A PaddlePaddle implementation of STGCN with a few modifications in the model architecture in order to forecast traffic jam.

About This repository contains the code of a PaddlePaddle implementation of STGCN based on the paper Spatio-Temporal Graph Convolutional Networks: A D

Tianjian Li 1 Jan 11, 2022
GLIP: Grounded Language-Image Pre-training

GLIP: Grounded Language-Image Pre-training Updates 12/06/2021: GLIP paper on arxiv https://arxiv.org/abs/2112.03857. Code and Model are under internal

Microsoft 862 Jan 01, 2023
Adaptive Attention Span for Reinforcement Learning

Adaptive Transformers in RL Official implementation of Adaptive Transformers in RL In this work we replicate several results from Stabilizing Transfor

100 Nov 15, 2022
Project dự đoán giá cổ phiếu bằng thuật toán LSTM gồm: code train và code demo

Web predicts stock prices using Long - Short Term Memory algorithm Give me some start please!!! User interface image: Choose: DayBegin, DayEnd, Stock

Vo Thuong Truong Nhon 8 Nov 11, 2022
Official PyTorch implementation of StyleGAN3

Modified StyleGAN3 Repo Changes Made tied to python 3.7 syntax .jpgs instead of .pngs for training sample seeds to recreate the 1024 training grid wit

Derrick Schultz (he/him) 83 Dec 15, 2022
Use AI to generate a optimized stock portfolio

Use AI, Modern Portfolio Theory, and Monte Carlo simulation's to generate a optimized stock portfolio that minimizes risk while maximizing returns. Ho

Greg James 30 Dec 22, 2022
Second Order Optimization and Curvature Estimation with K-FAC in JAX.

KFAC-JAX - Second Order Optimization with Approximate Curvature in JAX Installation | Quickstart | Documentation | Examples | Citing KFAC-JAX KFAC-JAX

DeepMind 90 Dec 22, 2022
Real-time Object Detection for Streaming Perception, CVPR 2022

StreamYOLO Real-time Object Detection for Streaming Perception Jinrong Yang, Songtao Liu, Zeming Li, Xiaoping Li, Sun Jian Real-time Object Detection

Jinrong Yang 237 Dec 27, 2022