Fast Style Transfer in TensorFlow

Overview

Fast Style Transfer in TensorFlow

Add styles from famous paintings to any photo in a fraction of a second! You can even style videos!

It takes 100ms on a 2015 Titan X to style the MIT Stata Center (1024×680) like Udnie, by Francis Picabia.

Our implementation is based off of a combination of Gatys' A Neural Algorithm of Artistic Style, Johnson's Perceptual Losses for Real-Time Style Transfer and Super-Resolution, and Ulyanov's Instance Normalization.

Sponsorship

Please consider sponsoring my work on this project!

License

Copyright (c) 2016 Logan Engstrom. Contact me for commercial use (or rather any use that is not academic research) (email: engstrom at my university's domain dot edu). Free for research use, as long as proper attribution is given and this copyright notice is retained.

Video Stylization

Here we transformed every frame in a video, then combined the results. Click to go to the full demo on YouTube! The style here is Udnie, as above.

See how to generate these videos here!

Image Stylization

We added styles from various paintings to a photo of Chicago. Click on thumbnails to see full applied style images.



Implementation Details

Our implementation uses TensorFlow to train a fast style transfer network. We use roughly the same transformation network as described in Johnson, except that batch normalization is replaced with Ulyanov's instance normalization, and the scaling/offset of the output tanh layer is slightly different. We use a loss function close to the one described in Gatys, using VGG19 instead of VGG16 and typically using "shallower" layers than in Johnson's implementation (e.g. we use relu1_1 rather than relu1_2). Empirically, this results in larger scale style features in transformations.

Virtual Environment Setup (Anaconda) - Windows/Linux

Tested on

Spec
Operating System Windows 10 Home
GPU Nvidia GTX 2080 TI
CUDA Version 11.0
Driver Version 445.75

Step 1:Install Anaconda

https://docs.anaconda.com/anaconda/install/

Step 2:Build a virtual environment

Run the following commands in sequence in Anaconda Prompt:

conda create -n tf-gpu tensorflow-gpu=2.1.0
conda activate tf-gpu
conda install jupyterlab
jupyter lab

Run the following command in the notebook or just conda install the package:

!pip install moviepy==1.0.2

Follow the commands below to use fast-style-transfer

Documentation

Training Style Transfer Networks

Use style.py to train a new style transfer network. Run python style.py to view all the possible parameters. Training takes 4-6 hours on a Maxwell Titan X. More detailed documentation here. Before you run this, you should run setup.sh. Example usage:

python style.py --style path/to/style/img.jpg \
  --checkpoint-dir checkpoint/path \
  --test path/to/test/img.jpg \
  --test-dir path/to/test/dir \
  --content-weight 1.5e1 \
  --checkpoint-iterations 1000 \
  --batch-size 20

Evaluating Style Transfer Networks

Use evaluate.py to evaluate a style transfer network. Run python evaluate.py to view all the possible parameters. Evaluation takes 100 ms per frame (when batch size is 1) on a Maxwell Titan X. More detailed documentation here. Takes several seconds per frame on a CPU. Models for evaluation are located here. Example usage:

python evaluate.py --checkpoint path/to/style/model.ckpt \
  --in-path dir/of/test/imgs/ \
  --out-path dir/for/results/

Stylizing Video

Use transform_video.py to transfer style into a video. Run python transform_video.py to view all the possible parameters. Requires ffmpeg. More detailed documentation here. Example usage:

python transform_video.py --in-path path/to/input/vid.mp4 \
  --checkpoint path/to/style/model.ckpt \
  --out-path out/video.mp4 \
  --device /gpu:0 \
  --batch-size 4

Requirements

You will need the following to run the above:

  • TensorFlow 0.11.0
  • Python 2.7.9, Pillow 3.4.2, scipy 0.18.1, numpy 1.11.2
  • If you want to train (and don't want to wait for 4 months):
    • A decent GPU
    • All the required NVIDIA software to run TF on a GPU (cuda, etc)
  • ffmpeg 3.1.3 if you want to stylize video

Citation

  @misc{engstrom2016faststyletransfer,
    author = {Logan Engstrom},
    title = {Fast Style Transfer},
    year = {2016},
    howpublished = {\url{https://github.com/lengstrom/fast-style-transfer/}},
    note = {commit xxxxxxx}
  }
Owner
Jefferson
I'm a Python full stack developer who has deep experience in Web development, desktop app development, machine learning, data science.
Jefferson
Simulations for Turring patterns on an apically expanding domain. T

Turing patterns on expanding domain Simulations for Turring patterns on an apically expanding domain. The details about the models and numerical imple

Yue Liu 0 Aug 03, 2021
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. ❓ W

Open Source Toontown Servers 5 Jan 09, 2022
Python implementation of Wu et al (2018)'s registration fusion

reg-fusion Projection of a central sulcus probability map using the RF-ANTs approach (right hemisphere shown). This is a Python implementation of Wu e

Dan Gale 26 Nov 12, 2021
This repo contains code to reproduce all experiments in Equivariant Neural Rendering

Equivariant Neural Rendering This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Col

Apple 83 Nov 16, 2022
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP

scdlpicker SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP Objective This is a simple deep learning (DL) repicker module

Joachim Saul 6 May 13, 2022
Use AI to generate a optimized stock portfolio

Use AI, Modern Portfolio Theory, and Monte Carlo simulation's to generate a optimized stock portfolio that minimizes risk while maximizing returns. Ho

Greg James 30 Dec 22, 2022
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

1.1k Jan 03, 2023
Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Clothes Parsing Overview This code provides an implementation of the research paper: A High Performance CRF Model for Clothes Parsing Edgar Simo-S

Edgar Simo-Serra 119 Nov 21, 2022
Code for Fold2Seq paper from ICML 2021

[ICML2021] Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design Environment file: environment.yml Data and Feat

International Business Machines 43 Dec 04, 2022
Direct application of DALLE-2 to video synthesis, using factored space-time Unet and Transformers

DALLE2 Video (wip) ** only to be built after DALLE2 image is done and replicated, and the importance of the prior network is validated ** Direct appli

Phil Wang 105 May 15, 2022
Self-Supervised Pillar Motion Learning for Autonomous Driving (CVPR 2021)

Self-Supervised Pillar Motion Learning for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Self-Supervised Pillar Motion Learning for Autono

QCraft 101 Dec 05, 2022
A Deep learning based streamlit web app which can tell with which bollywood celebrity your face resembles.

Project Name: Which Bollywood Celebrity You look like A Deep learning based streamlit web app which can tell with which bollywood celebrity your face

BAPPY AHMED 20 Dec 28, 2021
A PyTorch Implementation of PGL-SUM from "Combining Global and Local Attention with Positional Encoding for Video Summarization", Proc. IEEE ISM 2021

PGL-SUM: Combining Global and Local Attention with Positional Encoding for Video Summarization PyTorch Implementation of PGL-SUM From "PGL-SUM: Combin

Evlampios Apostolidis 35 Dec 22, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

632 Dec 13, 2022
Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020).

SentiBERT Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020). https://arxiv.org/abs/20

Da Yin 66 Aug 13, 2022
Posterior predictive distributions quantify uncertainties ignored by point estimates.

Posterior predictive distributions quantify uncertainties ignored by point estimates.

DeepMind 177 Dec 06, 2022
Generalized hybrid model for mode-locked laser diodes with an extended passive cavity

GenHybridMLLmodel Generalized hybrid model for mode-locked laser diodes with an extended passive cavity This hybrid simulation strategy combines a tra

Stijn Cuyvers 3 Sep 21, 2022
Official implementation of the network presented in the paper "M4Depth: A motion-based approach for monocular depth estimation on video sequences"

M4Depth This is the reference TensorFlow implementation for training and testing depth estimation models using the method described in M4Depth: A moti

Michaël Fonder 76 Jan 03, 2023
[TPDS'21] COSCO: Container Orchestration using Co-Simulation and Gradient Based Optimization for Fog Computing Environments

COSCO Framework COSCO is an AI based coupled-simulation and container orchestration framework for integrated Edge, Fog and Cloud Computing Environment

imperial-qore 39 Dec 25, 2022