End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021)

Overview

PDVC

PWC PWC

Official implementation for End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021)

[paper] [valse论文速递(Chinese)]

This repo supports:

  • two video captioning tasks: dense video captioning and video paragraph captioning
  • two datasets: ActivityNet Captions and YouCook2
  • video features containing C3D, TSN, and TSP.
  • visualization of the generated captions of your own videos

Table of Contents:

Updates

  • (2021.11.19) add code for running PDVC on raw videos and visualize the generated captions (support Chinese and other non-English languages)
  • (2021.11.19) add pretrained models with TSP features. It achieves 9.03 METEOR(2021) and 6.05 SODA_c, a very competitive results on ActivityNet Captions without self-critical sequence training.
  • (2021.08.29) add TSN pretrained models and support YouCook2

Introduction

PDVC is a simple yet effective framework for end-to-end dense video captioning with parallel decoding (PDVC), by formulating the dense caption generation as a set prediction task. Without bells and whistles, extensive experiments on ActivityNet Captions and YouCook2 show that PDVC is capable of producing high-quality captioning results, surpassing the state-of-the-art methods when its localization accuracy is on par with them. pdvc.jpg

Preparation

Environment: Linux, GCC>=5.4, CUDA >= 9.2, Python>=3.7, PyTorch>=1.5.1

  1. Clone the repo
git clone --recursive https://github.com/ttengwang/PDVC.git
  1. Create vitual environment by conda
conda create -n PDVC python=3.7
source activate PDVC
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 -c pytorch
conda install ffmpeg
pip install -r requirement.txt
  1. Compile the deformable attention layer (requires GCC >= 5.4).
cd pdvc/ops
sh make.sh

Running PDVC on Your Own Videos

Download a pretrained model (GoogleDrive) with TSP features and put it into ./save. Then run:

video_folder=visualization/videos
output_folder=visualization/output
pdvc_model_path=save/anet_tsp_pdvc/model-best.pth
output_language=en
bash test_and_visualize.sh $video_folder $output_folder $pdvc_model_path $output_language

check the $output_folder, you will see a new video with embedded captions. Note that we generate non-English captions by translating the English captions by GoogleTranslate. To produce chinese captions, set output_language=zh-cn. For other language support, find the abbreviation of your language at this url, and you also may need to download a font supporting your language and put it into ./visualization.

demo.gifdemo.gif

Training and Validation

Download Video Features

cd data/anet/features
bash download_anet_c3d.sh
# bash download_anet_tsn.sh
# bash download_i3d_vggish_features.sh
# bash download_tsp_features.sh

Dense Video Captioning

  1. PDVC with learnt proposals
# Training
config_path=cfgs/anet_c3d_pdvc.yml
python train.py --cfg_path ${config_path} --gpu_id ${GPU_ID}
# The script will evaluate the model for every epoch. The results and logs are saved in `./save`.

# Evaluation
eval_folder=anet_c3d_pdvc # specify the folder to be evaluated
python eval.py --eval_folder ${eval_folder} --eval_transformer_input_type queries --gpu_id ${GPU_ID}
  1. PDVC with ground-truth proposals
# Training
config_path=cfgs/anet_c3d_pdvc.yml
python train.py --cfg_path ${config_path} --gpu_id ${GPU_ID}

# Evaluation
eval_folder=anet_c3d_pdvc_gt
python eval.py --eval_folder ${eval_folder} --eval_transformer_input_type gt_proposals --gpu_id ${GPU_ID}

Video Paragraph Captioning

  1. PDVC with learnt proposals
# Training
config_path=cfgs/anet_c3d_pdvc.yml
python train.py --cfg_path ${config_path} --criteria_for_best_ckpt pc --gpu_id ${GPU_ID} 

# Evaluation
eval_folder=anet_c3d_pdvc # specify the folder to be evaluated
python eval.py --eval_folder ${eval_folder} --eval_transformer_input_type queries --gpu_id ${GPU_ID}
  1. PDVC with ground-truth proposals
# Training
config_path=cfgs/anet_c3d_pdvc_gt.yml
python train.py --cfg_path ${config_path} --criteria_for_best_ckpt pc --gpu_id ${GPU_ID}

# Evaluation
eval_folder=anet_c3d_pdvc_gt
python eval.py --eval_folder ${eval_folder} --eval_transformer_input_type gt_proposals --gpu_id ${GPU_ID}

Performance

Dense video captioning

Model Features config_path Url Recall Precision BLEU4 METEOR2018 METEOR2021 CIDEr SODA_c
PDVC_light C3D cfgs/anet_c3d_pdvcl.yml Google Drive 55.30 58.42 1.55 7.13 7.66 24.80 5.23
PDVC C3D cfgs/anet_c3d_pdvc.yml Google Drive 55.20 57.36 1.82 7.48 8.09 28.16 5.47
PDVC_light TSN cfgs/anet_tsn_pdvcl.yml Google Drive 55.34 57.97 1.66 7.41 7.97 27.23 5.51
PDVC TSN cfgs/anet_tsn_pdvc.yml Google Drive 56.21 57.46 1.92 8.00 8.63 29.00 5.68
PDVC_light TSP cfgs/anet_tsp_pdvcl.yml Google Drive 55.24 57.78 1.77 7.94 8.55 28.25 5.95
PDVC TSP cfgs/anet_tsp_pdvc.yml Google Drive 55.79 57.39 2.17 8.37 9.03 31.14 6.05

Notes:

Video paragraph captioning

Model Features config_path BLEU4 METEOR CIDEr
PDVC C3D cfgs/anet_c3d_pdvc.yml 9.67 14.74 16.43
PDVC TSN cfgs/anet_tsn_pdvc.yml 10.18 15.96 20.66
PDVC TSP cfgs/anet_tsp_pdvc.yml 10.46 16.42 20.91

Notes:

  • Paragraph-level scores are evaluated on the ActivityNet Entity ae-val set.

Citation

If you find this repo helpful, please consider citing:

@inproceedings{wang2021end,
  title={End-to-End Dense Video Captioning with Parallel Decoding},
  author={Wang, Teng and Zhang, Ruimao and Lu, Zhichao and Zheng, Feng and Cheng, Ran and Luo, Ping},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={6847--6857},
  year={2021}
}
@ARTICLE{wang2021echr,
  author={Wang, Teng and Zheng, Huicheng and Yu, Mingjing and Tian, Qian and Hu, Haifeng},
  journal={IEEE Transactions on Circuits and Systems for Video Technology}, 
  title={Event-Centric Hierarchical Representation for Dense Video Captioning}, 
  year={2021},
  volume={31},
  number={5},
  pages={1890-1900},
  doi={10.1109/TCSVT.2020.3014606}}

Acknowledgement

The implementation of Deformable Transformer is mainly based on Deformable DETR. The implementation of the captioning head is based on ImageCaptioning.pytorch. We thanks the authors for their efforts.

Owner
Teng Wang
My research interests focus on deep learning and computer vision.
Teng Wang
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
Official implementation of the paper "Lightweight Deep CNN for Natural Image Matting via Similarity Preserving Knowledge Distillation"

Lightweight-Deep-CNN-for-Natural-Image-Matting-via-Similarity-Preserving-Knowledge-Distillation Introduction Accepted at IEEE Signal Processing Letter

DongGeun-Yoon 19 Jun 07, 2022
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anıl Güven 4 Mar 07, 2022
StyleSwin: Transformer-based GAN for High-resolution Image Generation

StyleSwin This repo is the official implementation of "StyleSwin: Transformer-based GAN for High-resolution Image Generation". By Bowen Zhang, Shuyang

Microsoft 349 Dec 28, 2022
MM1 and MMC Queue Simulation using python - Results and parameters in excel and csv files

implementation of MM1 and MMC Queue on randomly generated data and evaluate simulation results then compare with analytical results and draw a plot curve for them, simulate some integrals and compare

Mohamadreza Rezaei 1 Jan 19, 2022
Learning Optical Flow from a Few Matches (CVPR 2021)

Learning Optical Flow from a Few Matches This repository contains the source code for our paper: Learning Optical Flow from a Few Matches CVPR 2021 Sh

Shihao Jiang (Zac) 159 Dec 16, 2022
Activity tragle - Google is tracking everything, we just look at it

activity_tragle Google is tracking everything, we just look at it here. You need

BERNARD Guillaume 1 Feb 15, 2022
A developer interface for creating Chat AIs for the Chai app.

ChaiPy A developer interface for creating Chat AIs for the Chai app. Usage Local development A quick start guide is available here, with a minimal exa

Chai 28 Dec 28, 2022
[ICML'21] Estimate the accuracy of the classifier in various environments through self-supervision

What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments? [Paper] [ICML'21 Project] PyTorch Implementation T

24 Oct 26, 2022
Point cloud processing tool library.

Point Cloud ToolBox This point cloud processing tool library can be used to process point clouds, 3d meshes, and voxels. Environment python 3.7.5 Dep

ZhangXinyun 40 Dec 09, 2022
Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models

LMPBT Supplementary code for the Paper entitled ``Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models"

1 Sep 29, 2022
Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity

Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, surf

Alex Song 17 Dec 19, 2022
Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)

Learning-Action-Completeness-from-Points Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal A

Pilhyeon Lee 67 Jan 03, 2023
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
A chemical analysis of lipophilicities & molecule drawings including ML

A chemical analysis of lipophilicity & molecule drawings including a bit of ML analysis. This is a simple project that includes two Jupyter files (one

Aurimas A. Nausėdas 7 Nov 22, 2022
This is a Image aid classification software based on python TK library development

This is a Image aid classification software based on python TK library development.

EasonChan 1 Jan 17, 2022
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Rishikesh (ऋषिकेश) 31 Dec 08, 2022
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Google_Landmark_Retrieval_2021_2nd_Place_Solution The 2nd place solution of 2021 google landmark retrieval on kaggle. Environment We use cuda 11.1/pyt

229 Dec 13, 2022