An example of Scatterbrain implementation (combining local attention and Performer)

Overview

We use the template from https://github.com/ashleve/lightning-hydra-template. Please read the instructions there to understand the repo structure.

Implementation & Experiments

An example of Scatterbrain implementation (combining local attention and Performer) is in the file src/models/modules/attention/sblocal.py.

T2T-ViT inference on ImageNet

To run the T2T-ViT inference on ImageNet experiment:

  1. Download the pretrained weights from the [T2T-ViT repo][https://github.com/yitu-opensource/T2T-ViT/releases]:
mkdir -p checkpoints/t2tvit
cd checkpoints/t2tvit
wget https://github.com/yitu-opensource/T2T-ViT/releases/download/main/81.7_T2T_ViTt_14.pth.tar
  1. Convert the weights to the format compatible with our implementation of T2T-ViT:
# cd to scatterbrain path
python scripts/convert_checkpoint_t2t_vit.py checkpoints/t2tvit/81.7_T2T_ViTt_14.pth.tar
  1. Download the ImageNet dataset (just the validation set will suffice). Below, /path/to/imagenet refers to the directory that contains the train and val directories.
  2. Run the inference experiments:
python run.py experiment=imagenet-t2tvit-eval.yaml model/t2tattn_cfg=full datamodule.data_dir=/path/to/imagenet/ eval.ckpt=checkpoints/t2tvit/81.7_T2T_ViTt_14.pth.tar  # 81.7% acc
python run.py experiment=imagenet-t2tvit-eval.yaml model/t2tattn_cfg=local datamodule.data_dir=/path/to/imagenet/ eval.ckpt=checkpoints/t2tvit/81.7_T2T_ViTt_14.pth.tar  # 80.6% acc
python run.py experiment=imagenet-t2tvit-eval.yaml model/t2tattn_cfg=performer datamodule.data_dir=/path/to/imagenet/ eval.ckpt=checkpoints/t2tvit/81.7_T2T_ViTt_14.pth.tar  # 77.8-79.0% acc (there's randomness)
python run.py experiment=imagenet-t2tvit-eval.yaml model/t2tattn_cfg=sblocal datamodule.data_dir=/path/to/imagenet/ eval.ckpt=checkpoints/t2tvit/81.7_T2T_ViTt_14.pth.tar  # 81.1% acc

Requirements

Python 3.8+, Pytorch 1.9+, torchvision, torchtext, pytorch-fast-transformers, munch, einops, timm, hydra-core, hydra-colorlog, python-dotenv, rich, pytorch-lightning, lightning-bolts.

We provide a Dockerfile that lists all the required packages.

Citation

If you use this codebase, or otherwise found our work valuable, please cite:

@inproceedings{chen2021scatterbrain,
  title={Scatterbrain: Unifying Sparse and Low-rank Attention},
  author={Beidi Chen and Tri Dao and Eric Winsor and Zhao Song and Atri Rudra and Christopher R\'{e}},
  booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
  year={2021}
}
Owner
HazyResearch
We are a CS research group led by Prof. Chris Ré.
HazyResearch
This project is the PyTorch implementation of our CVPR 2022 paper:

Requirements and Dependency Install PyTorch with CUDA (for GPU). (Experiments are validated on python 3.8.11 and pytorch 1.7.0) (For visualization if

Lei Huang 23 Nov 29, 2022
공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다.

ObsCare_Main 소개 공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다. CCTV의 대수가 급격히 늘어나면서 관리와 효율성 문제와 더불어, 곳곳에 설치된 CCTV를 개별 관제하는 것으로는 응급 상

5 Jul 07, 2022
Pmapper is a super-resolution and deconvolution toolkit for python 3.6+

pmapper pmapper is a super-resolution and deconvolution toolkit for python 3.6+. PMAP stands for Poisson Maximum A-Posteriori, a highly flexible and a

NASA Jet Propulsion Laboratory 8 Nov 06, 2022
Project repo for the paper SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition

SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition (BMVC 2021) Project repo for the paper SILT: Self-supervised Lighting Trans

6 Dec 04, 2022
Codebase for Attentive Neural Hawkes Process (A-NHP) and Attentive Neural Datalog Through Time (A-NDTT)

Introduction Codebase for the paper Transformer Embeddings of Irregularly Spaced Events and Their Participants. This codebase contains two packages: a

Alan Yang 28 Dec 12, 2022
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 662 Nov 20, 2022
Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation

Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation Overview This example will show how to validate the status of our firewall before and a

Calvin Remsburg 1 Jan 07, 2022
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022
[AAAI2021] The source code for our paper 《Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion》.

DSM The source code for paper Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion Project Website; Datasets li

Jinpeng Wang 114 Oct 16, 2022
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models

merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept

Pranav 39 Nov 21, 2022
Generalized and Efficient Blackbox Optimization System.

OpenBox Doc | OpenBox中文文档 OpenBox: Generalized and Efficient Blackbox Optimization System OpenBox is an efficient and generalized blackbox optimizatio

DAIR Lab 238 Dec 29, 2022
Official implementation of VQ-Diffusion

Official implementation of VQ-Diffusion: Vector Quantized Diffusion Model for Text-to-Image Synthesis

Microsoft 592 Jan 03, 2023
A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

ClusterGCN ⠀⠀ A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019). A

Benedek Rozemberczki 697 Dec 27, 2022
Speedy Implementation of Instance-based Learning (IBL) agents in Python

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1 Instal

0 Nov 18, 2021
HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)

Code for HDR Video Reconstruction HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021) Guanying Chen, Cha

Guanying Chen 64 Nov 19, 2022
Code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”

GATER This repository contains the code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”. Our implementation is

Jiacheng Ye 12 Nov 24, 2022
Scheduling BilinearRewards

Scheduling_BilinearRewards Requirement Python 3 =3.5 Structure main.py This file includes the main function. For getting the results in Figure 1, ple

junghun.kim 0 Nov 25, 2021
A script that trains a model to recognize handwritten digits using the MNIST data set.

handwritten-digits-recognition A script that trains a model to recognize handwritten digits using the MNIST data set. Then it loads external files and

Hamza Sayih 1 Oct 30, 2021
Gesture-Volume-Control - This Python program can adjust the system's volume by using hand gestures

Gesture-Volume-Control This Python program can adjust the system's volume by usi

VatsalAryanBhatanagar 1 Dec 30, 2021
Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

High-Performance Brain-to-Text Communication via Handwriting Overview This repo is associated with this manuscript, preprint and dataset. The code can

Francis R. Willett 306 Jan 03, 2023