an implementation of 3D Ken Burns Effect from a Single Image using PyTorch

Overview

3d-ken-burns

This is a reference implementation of 3D Ken Burns Effect from a Single Image [1] using PyTorch. Given a single input image, it animates this still image with a virtual camera scan and zoom subject to motion parallax. Should you be making use of our work, please cite our paper [1].

Paper

setup

Several functions are implemented in CUDA using CuPy, which is why CuPy is a required dependency. It can be installed using pip install cupy or alternatively using one of the provided binary packages as outlined in the CuPy repository. Please also make sure to have the CUDA_HOME environment variable configured.

In order to generate the video results, please also make sure to have pip install moviepy installed.

usage

To run it on an image and generate the 3D Ken Burns effect fully automatically, use the following command.

python autozoom.py --in ./images/doublestrike.jpg --out ./autozoom.mp4

To start the interface that allows you to manually adjust the camera path, use the following command. You can then navigate to http://localhost:8080/ and load an image using the button on the bottom right corner. Please be patient when loading an image and saving the result, there is a bit of background processing going on.

python interface.py

To run the depth estimation to obtain the raw depth estimate, use the following command. Please note that this script does not perform the depth adjustment, see #22 for information on how to add it.

python depthestim.py --in ./images/doublestrike.jpg --out ./depthestim.npy

To benchmark the depth estimation, run python benchmark-ibims.py or python benchmark-nyu.py. You can use it to easily verify that the provided implementation runs as expected.

colab

If you do not have a suitable environment to run this projects then you could give Colab a try. It allows you to run the project in the cloud, free of charge. There are several people who provide Colab notebooks that should get you started. A few that I am aware of include one from Arnaldo Gabriel, one from Vlad Alex, and one from Ahmed Harmouche.

dataset

This dataset is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License (CC BY-NC-SA 4.0) and may only be used for non-commercial purposes. Please see the LICENSE file for more information.

scene mode color depth normal
asdf flying 3.7 GB 1.0 GB 2.9 GB
asdf walking 3.6 GB 0.9 GB 2.7 GB
blank flying 3.2 GB 1.0 GB 2.8 GB
blank walking 3.0 GB 0.9 GB 2.7 GB
chill flying 5.4 GB 1.1 GB 10.8 GB
chill walking 5.2 GB 1.0 GB 10.5 GB
city flying 0.8 GB 0.2 GB 0.9 GB
city walking 0.7 GB 0.2 GB 0.8 GB
environment flying 1.9 GB 0.5 GB 3.5 GB
environment walking 1.8 GB 0.5 GB 3.3 GB
fort flying 5.0 GB 1.1 GB 9.2 GB
fort walking 4.9 GB 1.1 GB 9.3 GB
grass flying 1.1 GB 0.2 GB 1.9 GB
grass walking 1.1 GB 0.2 GB 1.6 GB
ice flying 1.2 GB 0.2 GB 2.1 GB
ice walking 1.2 GB 0.2 GB 2.0 GB
knights flying 0.8 GB 0.2 GB 1.0 GB
knights walking 0.8 GB 0.2 GB 0.9 GB
outpost flying 4.8 GB 1.1 GB 7.9 GB
outpost walking 4.6 GB 1.0 GB 7.4 GB
pirates flying 0.8 GB 0.2 GB 0.8 GB
pirates walking 0.7 GB 0.2 GB 0.8 GB
shooter flying 0.9 GB 0.2 GB 1.1 GB
shooter walking 0.9 GB 0.2 GB 1.0 GB
shops flying 0.2 GB 0.1 GB 0.2 GB
shops walking 0.2 GB 0.1 GB 0.2 GB
slums flying 0.5 GB 0.1 GB 0.8 GB
slums walking 0.5 GB 0.1 GB 0.7 GB
subway flying 0.5 GB 0.1 GB 0.9 GB
subway walking 0.5 GB 0.1 GB 0.9 GB
temple flying 1.7 GB 0.4 GB 3.1 GB
temple walking 1.7 GB 0.3 GB 2.8 GB
titan flying 6.2 GB 1.1 GB 11.5 GB
titan walking 6.0 GB 1.1 GB 11.3 GB
town flying 1.7 GB 0.3 GB 3.0 GB
town walking 1.8 GB 0.3 GB 3.0 GB
underland flying 5.4 GB 1.2 GB 12.1 GB
underland walking 5.1 GB 1.2 GB 11.4 GB
victorian flying 0.5 GB 0.1 GB 0.8 GB
victorian walking 0.4 GB 0.1 GB 0.7 GB
village flying 1.6 GB 0.3 GB 2.8 GB
village walking 1.6 GB 0.3 GB 2.7 GB
warehouse flying 0.9 GB 0.2 GB 1.5 GB
warehouse walking 0.8 GB 0.2 GB 1.4 GB
western flying 0.8 GB 0.2 GB 0.9 GB
western walking 0.7 GB 0.2 GB 0.8 GB

Please note that this is an updated version of the dataset that we have used in our paper. So while it has fewer scenes in total, each sample capture now has a varying focal length which should help with generalizability. Furthermore, some examples are either over- or under-exposed and it would be a good idea to remove these outliers. Please see #37, #39, and #40 for supplementary discussions.

video

Video

license

This is a project by Adobe Research. It is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License (CC BY-NC-SA 4.0) and may only be used for non-commercial purposes. Please see the LICENSE file for more information.

references

[1]  @article{Niklaus_TOG_2019,
         author = {Simon Niklaus and Long Mai and Jimei Yang and Feng Liu},
         title = {3D Ken Burns Effect from a Single Image},
         journal = {ACM Transactions on Graphics},
         volume = {38},
         number = {6},
         pages = {184:1--184:15},
         year = {2019}
     }

acknowledgment

The video above uses materials under a Creative Common license or with the owner's permission, as detailed at the end.

Owner
Simon Niklaus
Research Scientist at Adobe
Simon Niklaus
A system for quickly generating training data with weak supervision

Programmatically Build and Manage Training Data Announcement The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI applicat

Snorkel Team 5.4k Jan 02, 2023
Face Recognition plus identification simply and fast | Python

PyFaceDetection Face Recognition plus identification simply and fast Ubuntu Setup sudo pip3 install numpy sudo pip3 install cmake sudo pip3 install dl

Peyman Majidi Moein 16 Sep 22, 2022
The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation

PointNav-VO The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation Project Page | Paper Table of Contents Setup

Xiaoming Zhao 41 Dec 15, 2022
Beancount-mercury - Beancount importer for Mercury Startup Checking

beancount-mercury beancount-mercury provides an Importer for converting CSV expo

Michael Lynch 4 Oct 31, 2022
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022
Pixel-wise segmentation on VOC2012 dataset using pytorch.

PiWiSe Pixel-wise segmentation on the VOC2012 dataset using pytorch. FCN SegNet PSPNet UNet RefineNet For a more complete implementation of segmentati

Bodo Kaiser 378 Dec 30, 2022
Ppq - A powerful offline neural network quantization tool with custimized IR

PPL Quantization Tool(PPL 量化工具) PPL Quantization Tool (PPQ) is a powerful offlin

605 Jan 03, 2023
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
aka "Bayesian Methods for Hackers": An introduction to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view. All in pure Python ;)

Bayesian Methods for Hackers Using Python and PyMC The Bayesian method is the natural approach to inference, yet it is hidden from readers behind chap

Cameron Davidson-Pilon 25.1k Jan 02, 2023
Label Hallucination for Few-Shot Classification

Label Hallucination for Few-Shot Classification This repo covers the implementation of the following paper: Label Hallucination for Few-Shot Classific

Yiren Jian 13 Nov 13, 2022
Codeflare - Scale complex AI/ML pipelines anywhere

Scale complex AI/ML pipelines anywhere CodeFlare is a framework to simplify the integration, scaling and acceleration of complex multi-step analytics

CodeFlare 169 Nov 29, 2022
The MLOps platform for innovators 🚀

​ DS2.ai is an integrated AI operation solution that supports all stages from custom AI development to deployment. It is an AI-specialized platform service that collects data, builds a training datas

9 Jan 03, 2023
"Learning Free Gait Transition for Quadruped Robots vis Phase-Guided Controller"

PhaseGuidedControl The current version is developed based on the old version of RaiSim series, and possibly requires further modification. It will be

X-Mechanics 12 Oct 21, 2022
Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5)

YOLOv5-GUI 🎉 YOLOv5算法(ver.6及ver.5)的Qt-GUI实现 🎉 Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5). 基于YOLOv5的v5版本和v6版本及Javacr大佬的UI逻辑进行编写

EricFang 12 Dec 28, 2022
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Squidward 62 Nov 28, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ User support: lambeq-su

Cambridge Quantum 315 Jan 01, 2023
DilatedNet in Keras for image segmentation

Keras implementation of DilatedNet for semantic segmentation A native Keras implementation of semantic segmentation according to Multi-Scale Context A

303 Mar 15, 2022
FastReID is a research platform that implements state-of-the-art re-identification algorithms.

FastReID is a research platform that implements state-of-the-art re-identification algorithms.

JDAI-CV 2.8k Jan 07, 2023
Using PyTorch Perform intent classification using three different models to see which one is better for this task

Using PyTorch Perform intent classification using three different models to see which one is better for this task

Yoel Graumann 1 Feb 14, 2022
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior. The code will release soon. Implementation Python3 PyTorch=1.0 NVIDIA GPU+

FengZhang 34 Dec 04, 2022