RGB-D Local Implicit Function for Depth Completion of Transparent Objects

Overview

RGB-D Local Implicit Function for Depth Completion of Transparent Objects

[Project Page] [Paper]

Overview

This repository maintains the official implementation of our CVPR 2021 paper:

RGB-D Local Implicit Function for Depth Completion of Transparent Objects

By Luyang Zhu, Arsalan Mousavian, Yu Xiang, Hammad Mazhar, Jozef van Eenbergen, Shoubhik Debnath, Dieter Fox

Requirements

The code has been tested on the following system:

  • Ubuntu 18.04
  • Nvidia GPU (4 Tesla V100 32GB GPUs) and CUDA 10.2
  • python 3.7
  • pytorch 1.6.0

Installation

Docker (Recommended)

We provide a Dockerfile for building a container to run our code. More details about GPU accelerated Docker containers can be found here.

Local Installation

We recommend creating a new conda environment for a clean installation of the dependencies.

conda create --name lidf python=3.7
conda activate lidf

Make sure CUDA 10.2 is your default cuda. If your CUDA 10.2 is installed in /usr/local/cuda-10.2, add the following lines to your ~/.bashrc and run source ~/.bashrc:

export PATH=$PATH:/usr/local/cuda-10.2/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-10.2/lib64
export CPATH=$CPATH:/usr/local/cuda-10.2/include

Install libopenexr-dev

sudo apt-get update && sudo apt-get install libopenexr-dev

Install dependencies, we use ${REPO_ROOT_DIR} to represent the working directory of this repo.

cd ${REPO_ROOT_DIR}
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 -c pytorch
pip install -r requirements.txt

Dataset Preparation

ClearGrasp Dataset

ClearGrasp can be downloaded at their official website (Both training and testing dataset are needed). After you download zip files and unzip them on your local machine, the folder structure should be like

${DATASET_ROOT_DIR}
├── cleargrasp
│   ├── cleargrasp-dataset-train
│   ├── cleargrasp-dataset-test-val

Omniverse Object Dataset

Omniverse Object Dataset can be downloaded here. After you download zip files and unzip them on your local machine, the folder structure should be like

${DATASET_ROOT_DIR}
├── omniverse
│   ├── train
│   │	├── 20200904
│   │	├── 20200910

Soft link dataset

cd ${REPO_ROOT_DIR}
ln -s ${DATASET_ROOT_DIR}/cleargrasp datasets/cleargrasp
ln -s ${DATASET_ROOT_DIR}/omniverse datasets/omniverse

Testing

We provide pretrained checkpoints at the Google Drive. After you download the file, please unzip and copy the checkpoints folder under ${REPO_ROOT_DIR}.

Change the following line in ${REPO_ROOT_DIR}/src/experiments/implicit_depth/run.sh:

# To test first stage model (LIDF), use the following line
cfg_paths=experiments/implicit_depth/test_lidf.yaml
# To test second stage model (refinement model), use the following line
cfg_paths=experiments/implicit_depth/test_refine.yaml

After that, run the testing code:

cd src
bash experiments/implicit_depth/run.sh

Training

First stage model (LIDF)

Change the following line in ${REPO_ROOT_DIR}/src/experiments/implicit_depth/run.sh:

cfg_paths=experiments/implicit_depth/train_lidf.yaml

After that, run the training code:

cd src
bash experiments/implicit_depth/run.sh

Second stage model (refinement model)

In ${REPO_ROOT_DIR}/src/experiments/implicit_depth/train_refine.yaml, set lidf_ckpt_path to the path of the best checkpoint in the first stage training. Change the following line in ${REPO_ROOT_DIR}/src/experiments/implicit_depth/run.sh:

cfg_paths=experiments/implicit_depth/train_refine.yaml

After that, run the training code:

cd src
bash experiments/implicit_depth/run.sh

Second stage model (refinement model) with hard negative mining

In ${REPO_ROOT_DIR}/src/experiments/implicit_depth/train_refine_hardneg.yaml, set lidf_ckpt_path to the path of the best checkpoint in the first stage training, set checkpoint_path to the path of the best checkpoint in the second stage training. Change the following line in ${REPO_ROOT_DIR}/src/experiments/implicit_depth/run.sh:

cfg_paths=experiments/implicit_depth/train_refine_hardneg.yaml

After that, run the training code:

cd src
bash experiments/implicit_depth/run.sh

License

This work is licensed under NVIDIA Source Code License - Non-commercial.

Citation

If you use this code for your research, please citing our work:

@inproceedings{zhu2021rgbd,
author    = {Luyang Zhu and Arsalan Mousavian and Yu Xiang and Hammad Mazhar and Jozef van Eenbergen and Shoubhik Debnath and Dieter Fox},
title     = {RGB-D Local Implicit Function for Depth Completion of Transparent Objects},
booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year      = {2021}
}
Owner
NVIDIA Research Projects
NVIDIA Research Projects
Encode and decode text application

Text Encoder and Decoder Encode and decode text in many ways using this application! Encode in: ASCII85 Base85 Base64 Base32 Base16 Url MD5 Hash SHA-1

Alice 1 Feb 12, 2022
Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection.

WOOD Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection. Abstract The training and test data for deep-neural-ne

8 Dec 24, 2022
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022
Object Detection and Multi-Object Tracking

Object Detection and Multi-Object Tracking

Bobby Chen 1.6k Jan 04, 2023
Unified learning approach for egocentric hand gesture recognition and fingertip detection

Unified Gesture Recognition and Fingertip Detection A unified convolutional neural network (CNN) algorithm for both hand gesture recognition and finge

Mohammad 227 Dec 25, 2022
[Machine Learning Engineer Basic Guide] 부스트캠프 AI Tech - Product Serving 자료

Boostcamp-AI-Tech-Product-Serving 부스트캠프 AI Tech - Product Serving 자료 Repository 구조 part1(MLOps 개론, Model Serving, 머신러닝 프로젝트 라이프 사이클은 별도의 코드가 없으며, part

Sung Yun Byeon 269 Dec 21, 2022
Bianace Prediction Pytorch Model

Bianace Prediction Pytorch Model Main Results ETHUSDT from 2021-01-01 00:00:00 t

RoyYang 4 Jul 20, 2022
RoMa: A lightweight library to deal with 3D rotations in PyTorch.

RoMa: A lightweight library to deal with 3D rotations in PyTorch. RoMa (which stands for Rotation Manipulation) provides differentiable mappings betwe

NAVER 90 Dec 27, 2022
Official implementation for Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos

Multi-modal Interaction Graph Convolutioal Network for Temporal Language Localization in Videos Official implementation for Multi-Modal Interaction Gr

Zongmeng Zhang 15 Oct 18, 2022
[CVPR'21] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation

MonoRUn MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. CVPR 2021. [paper] Hansheng Chen, Yuyao Huang, Wei Tian*

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 96 Dec 10, 2022
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023
TinyML Cookbook, published by Packt

TinyML Cookbook This is the code repository for TinyML Cookbook, published by Packt. Author: Gian Marco Iodice Publisher: Packt About the book This bo

Packt 93 Dec 29, 2022
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
[ICCV'21] NEAT: Neural Attention Fields for End-to-End Autonomous Driving

NEAT: Neural Attention Fields for End-to-End Autonomous Driving Paper | Supplementary | Video | Poster | Blog This repository is for the ICCV 2021 pap

254 Jan 02, 2023
Automatic Number Plate Recognition using Contours and Convolution Neural Networks (CNN)

Cite our paper if you find this project useful https://www.ijariit.com/manuscripts/v7i4/V7I4-1139.pdf Abstract Image processing technology is used in

Adithya M 2 Jun 28, 2022
CVAT is free, online, interactive video and image annotation tool for computer vision

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 04, 2023
TransNet V2: Shot Boundary Detection Neural Network

TransNet V2: Shot Boundary Detection Neural Network This repository contains code for TransNet V2: An effective deep network architecture for fast sho

Tomáš Souček 212 Dec 27, 2022
Flexible time series feature extraction & processing

tsflex is a toolkit for flexible time series processing & feature extraction, that is efficient and makes few assumptions about sequence data. Useful

PreDiCT.IDLab 206 Dec 28, 2022
This project aims to be a handler for input creation and running of multiple RICEWQ simulations.

What is autoRICEWQ? This project aims to be a handler for input creation and running of multiple RICEWQ simulations. What is RICEWQ? From the descript

Yass Fuentes 1 Feb 01, 2022
Husein pet projects in here!

project-suka-suka Husein pet projects in here! List of projects mysejahtera-density. Generate resolution points using meshgrid and request each points

HUSEIN ZOLKEPLI 47 Dec 09, 2022