TigerLily: Finding drug interactions in silico with the Graph.

Overview

PyPI Version Docs Status Code Coverage Build Status Arxiv


Drug Interaction Prediction with Tigerlily

Documentation | Example Notebook | Youtube Video | Project Report

Tigerlily is a TigerGraph based system designed to solve the drug interaction prediction task. In this machine learning task, we want to predict whether two drugs have an adverse interaction. Our framework allows us to solve this highly relevant real-world problem using graph mining techniques in these steps:


(A) Creating and populating a Graph

As a first step, the basic TigerLily tools are imported, and we load the example dataset that integrated DrugBankDDI and the BioSNAP datasets. We create a PersonalizedPageRankMachine and connect to the host with the Graph. The settings of this machine should be the appropriate user credentials and details; a secret is obtained in the TigerGraph Graph Studio. We install the default Personalized PageRank query and upload the edges of the example dataset used in our demonstrations. This graph has drug and protein nodes, drug-protein and protein-protein interactions. Our goal is to predict the drug-drug interactions.

from tigerlily.dataset import ExampleDataset
from tigerlily.embedding import EmbeddingMachine
from tigerlily.operator import hadamard_operator
from tigerlily.pagerank import PersonalizedPageRankMachine

dataset = ExampleDataset()

edges = dataset.read_edges()
target = dataset.read_target()

machine = PersonalizedPageRankMachine(host="host_name",
                                      graphname="graph_name",
                                      username="username_value",
                                      secret="secret_value",
                                      password="password_value")
                           
machine.connect()
machine.install_query()

machine.upload_graph(new_graph=True, edges=edges)

(B) Computing the Approximate Personalized PageRank vectors

We are only interested in describing the neighbourhood of drug nodes in the biological graph. Because of this, we only retrieve the neighbourhood of the drugs - for each drug we retrieve those nodes (top-k closest neighbors) which are the closest based on the Personalized PageRank scores. We are going to learn the drug embeddings based on these scores.

drug_node_ids = machine.connection.getVertices("drug")

pagerank_scores = machine.get_personalized_pagerank(drug_node_ids)

(C) Learning the Drug Embeddings and Drug Pair Feature Generation

We create an embedding machine that creates drug node representations. The embedding machine instance has a random seed, a dimensions hyperparameter (this sets the number of factors), and a maximal iteration count for the factorization. An embedding is learned from the Personalized PageRank scores and using the drug features we create drug pair features with the operator function.

embedding_machine = EmbeddingMachine(seed=42,
                                     dimensions=32,
                                     max_iter=100)

embedding = embedding_machine.fit(pagerank_scores)

drug_pair_features = embedding_machine.create_features(target, hadamard_operator)

(D) Predicting Drug Interactions and Inference

We load a gradient boosting-based classifier, an evaluation metric for binary classification, and a function to create train-test splits. We create a train and test portion of the drug pairs using 80% of the pairs for training. A gradient boosted tree model is trained, score the model on the test set. We compute an AUROC score on the test portion of the dataset and print it out.

from lightgbm import LGBMClassifier
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(drug_pair_features,
                                                    target,
                                                    train_size=0.8,
                                                    random_state=42)

model = LGBMClassifier(learning_rate=0.01,
                       n_estimators=100)

model.fit(X_train,y_train["label"])

predicted_label = model.predict_proba(X_test)

auroc_score_value = roc_auc_score(y_test["label"], predicted_label[:,1])

print(f'AUROC score: {auroc_score_value :.4f}')

Head over to the documentation to find out more about installation and a full API reference. For a quick start, check out the example notebook. If you notice anything unexpected, please open an issue.


Citing

If you find Tigerlily useful in your research, please consider adding the following citation:

@misc{tigerlily2022,
  author = {Benedek Rozemberczki},
  title = {TigerLily: Finding drug interactions in silico with the Graph},
  year = {2022},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/benedekrozemberczki/tigerlily}},
}

Installation

To install tigerlily, simply run:

pip install tigerlily

Running tests

Running tests requires that you run:

$ tox -e py

License


Credit

The TigerLily logo and the high level machine learning workflow image are based on:

Benedek Rozemberczki has a yearly subscription to the Noun Project that allows the customization and commercial use of the icons.

You might also like...
git《Self-Attention Attribution: Interpreting Information Interactions Inside Transformer》(AAAI 2021) GitHub:

Self-Attention Attribution This repository contains the implementation for AAAI-2021 paper Self-Attention Attribution: Interpreting Information Intera

Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time
Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time

Semi Hand-Object Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time (CVPR 2021).

Official code for
Official code for "Focal Self-attention for Local-Global Interactions in Vision Transformers"

Focal Transformer This is the official implementation of our Focal Transformer -- "Focal Self-attention for Local-Global Interactions in Vision Transf

A simple API wrapper for Discord interactions.
A simple API wrapper for Discord interactions.

Your ultimate Discord interactions library for discord.py. About | Installation | Examples | Discord | PyPI About What is discord-py-interactions? dis

Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

A sample pytorch Implementation of ACL 2021 research paper "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE-Pytorch This repository is a pytorch version that implements Ali's ACL 2021 research paper Learning Span-Level Interactions for Aspect Senti

Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I

[CVPR21] LightTrack: Finding Lightweight Neural Network for Object Tracking via One-Shot Architecture Search
[CVPR21] LightTrack: Finding Lightweight Neural Network for Object Tracking via One-Shot Architecture Search

LightTrack: Finding Lightweight Neural Networks for Object Tracking via One-Shot Architecture Search The official implementation of the paper LightTra

Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Finding an Unsupervised Image Segmenter in each of your Deep Generative Models Description Recent research has shown that numerous human-interpretable

Releases(v0.1.0)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This

Zhedong Zheng 335 Jan 06, 2023
QuALITY: Question Answering with Long Input Texts, Yes!

QuALITY: Question Answering with Long Input Texts, Yes! Authors: Richard Yuanzhe Pang,* Alicia Parrish,* Nitish Joshi,* Nikita Nangia, Jason Phang, An

ML² AT CILVR 61 Jan 02, 2023
Author: Wenhao Yu ([email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation

Diversifying Commonsense Reasoning Generation on Knowledge Graph Introduction -- This is the pytorch implementation of our ACL 2022 paper "Diversifyin

DM2 Lab @ ND 61 Dec 30, 2022
Pytorch library for seismic data augmentation

Pytorch library for seismic data augmentation

Artemii Novoselov 27 Nov 22, 2022
OMAMO: orthology-based model organism selection

OMAMO: orthology-based model organism selection OMAMO is a tool that suggests the best model organism to study a biological process based on orthologo

Dessimoz Lab 5 Apr 22, 2022
Implementation of Heterogeneous Graph Attention Network

HetGAN Implementation of Heterogeneous Graph Attention Network This is the code repository of paper "Prediction of Metro Ridership During the COVID-19

5 Dec 28, 2021
Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi

A tutorial showing how to set up TensorFlow's Object Detection API on the Raspberry Pi

Evan 1.1k Dec 26, 2022
On Effective Scheduling of Model-based Reinforcement Learning

On Effective Scheduling of Model-based Reinforcement Learning Code to reproduce the experiments in On Effective Scheduling of Model-based Reinforcemen

laihang 8 Oct 07, 2022
A package to predict protein inter-residue geometries from sequence data

trRosetta This package is a part of trRosetta protein structure prediction protocol developed in: Improved protein structure prediction using predicte

Ivan Anishchenko 185 Jan 07, 2023
AntroPy: entropy and complexity of (EEG) time-series in Python

AntroPy is a Python 3 package providing several time-efficient algorithms for computing the complexity of time-series. It can be used for example to e

Raphael Vallat 153 Dec 27, 2022
A toolkit for Lagrangian-based constrained optimization in Pytorch

Cooper About Cooper is a toolkit for Lagrangian-based constrained optimization in Pytorch. This library aims to encourage and facilitate the study of

Cooper 34 Jan 01, 2023
NeuralCompression is a Python repository dedicated to research of neural networks that compress data

NeuralCompression is a Python repository dedicated to research of neural networks that compress data. The repository includes tools such as JAX-based entropy coders, image compression models, video c

Facebook Research 297 Jan 06, 2023
Implementation for Simple Spectral Graph Convolution in ICLR 2021

Simple Spectral Graph Convolutional Overview This repo contains an example implementation of the Simple Spectral Graph Convolutional (S^2GC) model. Th

allenhaozhu 64 Dec 31, 2022
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
Re-implementation of 'Grokking: Generalization beyond overfitting on small algorithmic datasets'

Re-implementation of the paper 'Grokking: Generalization beyond overfitting on small algorithmic datasets' Paper Original paper can be found here Data

Tom Lieberum 38 Aug 09, 2022
Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021.

Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021. Figure 1: In the process of motion capture (mocap), some joints or even the whole human

Shinny cui 3 Oct 31, 2022
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Jan 05, 2023
CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes

CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes. CHERRY is based on a deep learning model, which consists of a graph convolutional encoder and a link

Kenneth Shang 12 Dec 15, 2022
Code for Massive-scale Decoding for Text Generation using Lattices

Massive-scale Decoding for Text Generation using Lattices Jiacheng Xu, Greg Durrett TL;DR: a new search algorithm to construct lattices encoding many

Jiacheng Xu 37 Dec 18, 2022