Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time

Overview

Semi Hand-Object

Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time (CVPR 2021). report

Project Page with Videos Teaser

Installation

  • Clone this repository:
    git clone https://github.com/stevenlsw/Semi-Hand-Object.git
  • Install the dependencies by the following command:
    pip install -r requirements.txt

Quick Demo (update soon)

Training and Evaluation on HO3D Dataset

Preparation

  • Download the MANO model files (mano_v1_2.zip) from MANO website. Unzip and put mano/models/MANO_RIGHT.pkl into assets/mano_models.

  • Download the YCB-Objects used in HO3D dataset. Put unzipped folder object_models under assets.

  • The structure should look like this:

Semi-Hand-Object/
  assets/
    mano_models/
      MANO_RIGHT.pkl
    object_models/
      006_mustard_bottle/
        points.xyz
        textured_simple.obj
      ......
  • Download and unzip HO3D dataset to path you like, the unzipped path is referred as $HO3D_root.

Evaluation

The hand & object pose estimation performance on HO3D dataset. We evaluate hand pose results on the official CodaLab challenge. The hand metric below is mean joint/mesh error after procrustes alignment, the object metric is average object vertices error within 10% of object diameter (ADD-0.1D).

In our model, we use transformer architecture to perform hand-object contextual reasoning.

Please download the trained model and save to path you like, the model path is refered as $resume.

trained-model joint↓ mesh↓ cleanser↑ bottle↑ can↑ ave↑
link 0.99 0.95 92.2 80.4 55.7 76.1
  • Testing with trained model

   python traineval.py --evaluate --HO3D_root={path to the dataset} --resume={path to the model} --test_batch=24 --host_folder=exp_results

The testing results will be saved in the $host_folder, which contains the following files:

  • option.txt (saved options)
  • object_result.txt (object pose evaluation performance)
  • pred.json (zip -j pred.zip pred.json and submit to the offical challenge for hand evaluation)

Training

Please download the preprocessed files to train HO3D dataset. The downloaded files contains training list and labels generated from the original dataset to accelerate training. Please put the unzipped folder ho3d-process to current directory.

    python traineval.py --HO3D_root={path to the dataset} --train_batch=24 --host_folder=exp_results

The models will be automatically saved in $host_folder

Citation

@inproceedings{liu2021semi,
  title={Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time},
  author={Liu, Shaowei and Jiang, Hanwen and Xu, Jiarui and Liu, Sifei and Wang, Xiaolong},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  year={2021}
}

TODO

  • Google colab demo

Acknowledgments

We thank:

Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
This repository contains the code for Direct Molecular Conformation Generation (DMCG).

Direct Molecular Conformation Generation This repository contains the code for Direct Molecular Conformation Generation (DMCG). Dataset Download rdkit

25 Dec 20, 2022
Python codes for Lite Audio-Visual Speech Enhancement.

Lite Audio-Visual Speech Enhancement (Interspeech 2020) Introduction This is the PyTorch implementation of Lite Audio-Visual Speech Enhancement (LAVSE

Shang-Yi Chuang 85 Dec 01, 2022
PyTorch implementation of the Transformer in Post-LN (Post-LayerNorm) and Pre-LN (Pre-LayerNorm).

Transformer-PyTorch A PyTorch implementation of the Transformer from the paper Attention is All You Need in both Post-LN (Post-LayerNorm) and Pre-LN (

Jared Wang 22 Feb 27, 2022
HyDiff: Hybrid Differential Software Analysis

HyDiff: Hybrid Differential Software Analysis This repository provides the tool and the evaluation subjects for the paper HyDiff: Hybrid Differential

Yannic Noller 22 Oct 20, 2022
[ACL-IJCNLP 2021] "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets"

EarlyBERT This is the official implementation for the paper in ACL-IJCNLP 2021 "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets" by

VITA 13 May 11, 2022
Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning

Graph-InfoClust-GIC [PAKDD 2021] PAKDD'21 version Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs Preprint version Graph InfoClu

Costas Mavromatis 21 Dec 03, 2022
The mini-AlphaStar (mini-AS, or mAS) - mini-scale version (non-official) of the AlphaStar (AS)

A mini-scale reproduction code of the AlphaStar program. Note: the original AlphaStar is the AI proposed by DeepMind to play StarCraft II.

Ruo-Ze Liu 216 Jan 04, 2023
Wenzhou-Kean University AI-LAB

AI-LAB This is Wenzhou-Kean University AI-LAB. Our research interests are in Computer Vision and Natural Language Processing. Computer Vision Please g

WKU AI-LAB 10 May 05, 2022
Shuffle Attention for MobileNetV3

SA-MobileNetV3 Shuffle Attention for MobileNetV3 Train Run the following command for train model on your own dataset: python train.py --dataset mnist

Sajjad Aemmi 36 Dec 28, 2022
PyTorch implementation of the Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning This is the official PyTorch implementation of the ContrastiveCrop paper: @artic

249 Dec 28, 2022
Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness through a Teacher-guided curriculum Learning Approach

Get Fooled for the Right Reason Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness throu

Sowrya Gali 1 Apr 25, 2022
An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics.

Sketch Simulator An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics. See

12 Dec 18, 2022
NDE: Climate Modeling with Neural Diffusion Equation, ICDM'21

Climate Modeling with Neural Diffusion Equation Introduction This is the repository of our accepted ICDM 2021 paper "Climate Modeling with Neural Diff

Jeehyun Hwang 5 Dec 18, 2022
An adaptive hierarchical energy management strategy for hybrid electric vehicles

An adaptive hierarchical energy management strategy This project contains the source code of an adaptive hierarchical EMS combining heuristic equivale

19 Dec 13, 2022
Optimizaciones incrementales al problema N-Body con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámbito de HPC.

Python HPC Optimizaciones incrementales de N-Body (all-pairs) con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámb

Andrés Milla 12 Aug 04, 2022
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

183 Dec 28, 2022
"Exploring Vision Transformers for Fine-grained Classification" at CVPRW FGVC8

FGVC8 Exploring Vision Transformers for Fine-grained Classification paper presented at the CVPR 2021, The Eight Workshop on Fine-Grained Visual Catego

Marcos V. Conde 19 Dec 06, 2022
Coded illumination for improved lensless imaging

CodedCam Coded Illumination for Improved Lensless Imaging Paper | Supplementary results | Data and Code are available. Coded illumination for improved

Computational Sensing and Information Processing Lab 1 Nov 29, 2021