Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Overview

Robust Video Matting (RVM)

Teaser

English | 中文

Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specifically designed for robust human video matting. Unlike existing neural models that process frames as independent images, RVM uses a recurrent neural network to process videos with temporal memory. RVM can perform matting in real-time on any videos without additional inputs. It achieves 4K 76FPS and HD 104FPS on an Nvidia GTX 1080 Ti GPU. The project was developed at ByteDance Inc.


News

  • [Aug 25 2021] Source code and pretrained models are published.
  • [Jul 27 2021] Paper is accepted by WACV 2022.

Showreel

Watch the showreel video (YouTube, Bilibili) to see the model's performance.

All footage in the video are available in Google Drive and Baidu Pan (code: tb3w).


Demo

  • Webcam Demo: Run the model live in your browser. Visualize recurrent states.
  • Colab Demo: Test our model on your own videos with free GPU.

Download

We recommend MobileNetv3 models for most use cases. ResNet50 models are the larger variant with small performance improvements. Our model is available on various inference frameworks. See inference documentation for more instructions.

Framework Download Notes
PyTorch rvm_mobilenetv3.pth
rvm_resnet50.pth
Official weights for PyTorch. Doc
TorchHub Nothing to Download. Easiest way to use our model in your PyTorch project. Doc
TorchScript rvm_mobilenetv3_fp32.torchscript
rvm_mobilenetv3_fp16.torchscript
rvm_resnet50_fp32.torchscript
rvm_resnet50_fp16.torchscript
If inference on mobile, consider export int8 quantized models yourself. Doc
ONNX rvm_mobilenetv3_fp32.onnx
rvm_mobilenetv3_fp16.onnx
rvm_resnet50_fp32.onnx
rvm_resnet50_fp16.onnx
Tested on ONNX Runtime with CPU and CUDA backends. Provided models use opset 12. Doc, Exporter.
TensorFlow rvm_mobilenetv3_tf.zip
rvm_resnet50_tf.zip
TensorFlow 2 SavedModel. Doc
TensorFlow.js rvm_mobilenetv3_tfjs_int8.zip
Run the model on the web. Demo, Starter Code
CoreML rvm_mobilenetv3_1280x720_s0.375_fp16.mlmodel
rvm_mobilenetv3_1280x720_s0.375_int8.mlmodel
rvm_mobilenetv3_1920x1080_s0.25_fp16.mlmodel
rvm_mobilenetv3_1920x1080_s0.25_int8.mlmodel
CoreML does not support dynamic resolution. Other resolutions can be exported yourself. Models require iOS 13+. s denotes downsample_ratio. Doc, Exporter

All models are available in Google Drive and Baidu Pan (code: gym7).


PyTorch Example

  1. Install dependencies:
pip install -r requirements_inference.txt
  1. Load the model:
import torch
from model import MattingNetwork

model = MattingNetwork('mobilenetv3').eval().cuda()  # or "resnet50"
model.load_state_dict(torch.load('rvm_mobilenetv3.pth'))
  1. To convert videos, we provide a simple conversion API:
from inference import convert_video

convert_video(
    model,                           # The model, can be on any device (cpu or cuda).
    input_source='input.mp4',        # A video file or an image sequence directory.
    output_type='video',             # Choose "video" or "png_sequence"
    output_composition='output.mp4', # File path if video; directory path if png sequence.
    output_video_mbps=4,             # Output video mbps. Not needed for png sequence.
    downsample_ratio=None,           # A hyperparameter to adjust or use None for auto.
    seq_chunk=12,                    # Process n frames at once for better parallelism.
)
  1. Or write your own inference code:
from torch.utils.data import DataLoader
from torchvision.transforms import ToTensor
from inference_utils import VideoReader, VideoWriter

reader = VideoReader('input.mp4', transform=ToTensor())
writer = VideoWriter('output.mp4', frame_rate=30)

bgr = torch.tensor([.47, 1, .6]).view(3, 1, 1).cuda()  # Green background.
rec = [None] * 4                                       # Initial recurrent states.
downsample_ratio = 0.25                                # Adjust based on your video.

with torch.no_grad():
    for src in DataLoader(reader):                     # RGB tensor normalized to 0 ~ 1.
        fgr, pha, *rec = model(src.cuda(), *rec, downsample_ratio)  # Cycle the recurrent states.
        com = fgr * pha + bgr * (1 - pha)              # Composite to green background. 
        writer.write(com)                              # Write frame.
  1. The models and converter API are also available through TorchHub.
# Load the model.
model = torch.hub.load("PeterL1n/RobustVideoMatting", "mobilenetv3") # or "resnet50"

# Converter API.
convert_video = torch.hub.load("PeterL1n/RobustVideoMatting", "converter")

Please see inference documentation for details on downsample_ratio hyperparameter, more converter arguments, and more advanced usage.


Training and Evaluation

Please refer to the training documentation to train and evaluate your own model.


Speed

Speed is measured with inference_speed_test.py for reference.

GPU dType HD (1920x1080) 4K (3840x2160)
RTX 3090 FP16 172 FPS 154 FPS
RTX 2060 Super FP16 134 FPS 108 FPS
GTX 1080 Ti FP32 104 FPS 74 FPS
  • Note 1: HD uses downsample_ratio=0.25, 4K uses downsample_ratio=0.125. All tests use batch size 1 and frame chunk 1.
  • Note 2: GPUs before Turing architecture does not support FP16 inference, so GTX 1080 Ti uses FP32.
  • Note 3: We only measure tensor throughput. The provided video conversion script in this repo is expected to be much slower, because it does not utilize hardware video encoding/decoding and does not have the tensor transfer done on parallel threads. If you are interested in implementing hardware video encoding/decoding in Python, please refer to PyNvCodec.

Project Members

You might also like...
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

sne4onnx A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or

Simple ONNX operation generator. Simple Operation Generator for ONNX.
Simple ONNX operation generator. Simple Operation Generator for ONNX.

sog4onnx Simple ONNX operation generator. Simple Operation Generator for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools Key concept V

A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.
A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

sam4onnx A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for

Simple tool to combine(merge) onnx models.  Simple Network Combine Tool for ONNX.
Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX.

snc4onnx Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools 1.

Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.
Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.

scc4onnx Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel

Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite.
Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite.

tflite2tensorflow Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite. 1. Supported Layers No. TFLite Layer TF

A few stylization coreML models that I've trained with CreateML
A few stylization coreML models that I've trained with CreateML

CoreML-StyleTransfer A few stylization coreML models that I've trained with CreateML You can open and use the .mlmodel files in the "models" folder in

Github project for Attention-guided Temporal Coherent Video Object Matting.

Attention-guided Temporal Coherent Video Object Matting This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matti

Video Matting Refinement For Python

Video-matting refinement Library (use pip to install) scikit-image numpy av matplotlib Run Static background python path_to_video.mp4 Moving backgroun

Contains source code for the winning solution of the xView3 challenge

Winning Solution for xView3 Challenge This repository contains source code and pretrained models for my (Eugene Khvedchenya) solution to xView 3 Chall

Eugene Khvedchenya 51 Dec 30, 2022
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

王皓波 147 Jan 07, 2023
AITUS - An atomatic notr maker for CYTUS

AITUS an automatic note maker for CYTUS. 利用AI根据指定乐曲生成CYTUS游戏谱面。 效果展示:https://www

GradiusTwinbee 6 Feb 24, 2022
A simple configurable bot for sending arXiv article alert by mail

arXiv-newsletter A simple configurable bot for sending arXiv article alert by mail. Prerequisites PyYAML=5.3.1 arxiv=1.4.0 Configuration All config

SXKDZ 21 Nov 09, 2022
FANet - Real-time Semantic Segmentation with Fast Attention

FANet Real-time Semantic Segmentation with Fast Attention Ping Hu, Federico Perazzi, Fabian Caba Heilbron, Oliver Wang, Zhe Lin, Kate Saenko , Stan Sc

Ping Hu 42 Nov 30, 2022
Code for HodgeNet: Learning Spectral Geometry on Triangle Meshes, in SIGGRAPH 2021.

HodgeNet | Webpage | Paper | Video HodgeNet: Learning Spectral Geometry on Triangle Meshes Dmitriy Smirnov, Justin Solomon SIGGRAPH 2021 Set-up To ins

Dima Smirnov 61 Nov 27, 2022
Create time-series datacubes for supervised machine learning with ICEYE SAR images.

ICEcube is a Python library intended to help organize SAR images and annotations for supervised machine learning applications. The library generates m

ICEYE Ltd 65 Jan 03, 2023
Marine debris detection with commercial satellite imagery and deep learning.

Marine debris detection with commercial satellite imagery and deep learning. Floating marine debris is a global pollution problem which threatens mari

Inter Agency Implementation and Advanced Concepts 56 Dec 16, 2022
TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video

TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video Timely handgun detection is a cr

Mario Duran-Vega 18 Dec 26, 2022
Finding Donors for CharityML

Finding-Donors-for-CharityML - Investigated factors that affect the likelihood of charity donations being made based on real census data.

Moamen Abdelkawy 1 Dec 30, 2021
The code of "Dependency Learning for Legal Judgment Prediction with a Unified Text-to-Text Transformer".

Code data_preprocess.py: preprocess data for Dependent-T5. parameters.py: define parameters of Dependent-T5. train_tools.py: traning and evaluation co

1 Apr 21, 2022
Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.

Price-Prediction-For-a-Dream-Home ROADMAP TO THIS LINEAR REGRESSION BASED HOUSE PRICE PREDICTION PREDICTION MODEL Import all the dependencies of the p

DIKSHA DESWAL 1 Dec 29, 2021
PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

PERIN: Permutation-invariant Semantic Parsing David Samuel & Milan Straka Charles University Faculty of Mathematics and Physics Institute of Formal an

ÚFAL 40 Jan 04, 2023
DeceFL: A Principled Decentralized Federated Learning Framework

DeceFL: A Principled Decentralized Federated Learning Framework This repository comprises codes that reproduce experiments in Ye, et al (2021), which

Huazhong Artificial Intelligence Lab (HAIL) 10 May 31, 2022
code from "Tensor decomposition of higher-order correlations by nonlinear Hebbian plasticity"

Code associated with the paper "Tensor decomposition of higher-order correlations by nonlinear Hebbian learning," Ocker & Buice, Neurips 2021. "plot_f

Gabriel Koch Ocker 4 Oct 16, 2022
Torchlight2 lan game server tool - A message forwarding tool for Torchlight 2 lan game

Torchlight 2 Lan Game Server Tool A message forwarding tool for Torchlight 2 lan

Huaijun Jiang 3 Nov 01, 2022
PyTorch implementation of "Optimization Planning for 3D ConvNets"

Optimization-Planning-for-3D-ConvNets Code for the ICML 2021 paper: Optimization Planning for 3D ConvNets. Authors: Zhaofan Qiu, Ting Yao, Chong-Wah N

Zhaofan Qiu 2 Jan 12, 2022
ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator

ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences an

Microsoft 8k Jan 04, 2023
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops

Google 21.3k Jan 01, 2023