Code for LIGA-Stereo Detector, ICCV'21

Overview

LIGA-Stereo

Introduction

This is the official implementation of the paper LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector, In ICCV'21, Xiaoyang Guo, Shaoshuai Shi, Xiaogang Wang and Hongsheng Li.

[project page] [paper] [code]

Framework

Overview

Installation

Requirements

All the codes are tested in the following environment:

  • Linux (tested on Ubuntu 14.04 / 16.04)
  • Python 3.7
  • PyTorch 1.6.0
  • Torchvision 0.7.0
  • CUDA 9.2 / 10.1
  • spconv (commit f22dd9)

Installation Steps

a. Clone this repository.

git clone https://github.com/xy-guo/LIGA.git

b. Install the dependent libraries as follows:

  • Install the dependent python libraries:
pip install -r requirements.txt 
  • Install the SparseConv library, we use the implementation from [spconv].
git clone https://github.com/traveller59/spconv
git reset --hard f22dd9
git submodule update --recursive
python setup.py bdist_wheel
pip install ./dist/spconv-1.2.1-cp37-cp37m-linux_x86_64.whl
git clone https://github.com/xy-guo/mmdetection_kitti
python setup.py develop

c. Install this library by running the following command:

python setup.py develop

Getting Started

The dataset configs are located within configs/stereo/dataset_configs, and the model configs are located within configs/stereo for different datasets.

Dataset Preparation

Currently we only provide the dataloader of KITTI dataset.

  • Please download the official KITTI 3D object detection dataset and organize the downloaded files as follows (the road planes are provided by OpenPCDet [road plane], which are optional for training LiDAR models):
LIGA_PATH
├── data
│   ├── kitti
│   │   │── ImageSets
│   │   │── training
│   │   │   ├──calib & velodyne & label_2 & image_2 & (optional: planes)
│   │   │── testing
│   │   │   ├──calib & velodyne & image_2
├── configs
├── liga
├── tools
  • You can also choose to link your KITTI dataset path by
YOUR_KITTI_DATA_PATH=~/data/kitti_object
ln -s $YOUR_KITTI_DATA_PATH/training/ ./data/kitti/
ln -s $YOUR_KITTI_DATA_PATH/testing/ ./data/kitti/
  • Generate the data infos by running the following command:
python -m liga.datasets.kitti.kitti_dataset create_kitti_infos
python -m liga.datasets.kitti.kitti_dataset create_gt_database_only

Training & Testing

Test and evaluate the pretrained models

  • To test with multiple GPUs:
./scripts/dist_test_ckpt.sh ${NUM_GPUS} ./configs/stereo/kitti_models/liga.yaml ./ckpt/pretrained_liga.pth

Train a model

  • Train with multiple GPUs
./scripts/dist_train.sh ${NUM_GPUS} 'exp_name' ./configs/stereo/kitti_models/liga.yaml

Pretrained Models

Google Drive

Citation

@InProceedings{Guo_2021_ICCV,
    author = {Guo, Xiaoyang and Shi, Shaoshuai and Wang, Xiaogang and Li, Hongsheng},
    title = {LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month = {October},
    year = {2021}
}

Acknowledgements

Part of codes are migrated from OpenPCDet and DSGN.

Owner
Xiaoyang Guo
Xiaoyang Guo
Benchmarking the robustness of Spatial-Temporal Models

Benchmarking the robustness of Spatial-Temporal Models This repositery contains the code for the paper Benchmarking the Robustness of Spatial-Temporal

Yi Chenyu Ian 15 Dec 16, 2022
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations Project | Paper | Colab PyTorch implementation of SDEdit: Image Synthesis a

536 Jan 05, 2023
[ACM MM 2021] Yes, "Attention is All You Need", for Exemplar based Colorization

Transformer for Image Colorization This is an implemention for Yes, "Attention Is All You Need", for Exemplar based Colorization, and the current soft

Wang Yin 30 Dec 07, 2022
The all new way to turn your boring vector meshes into the new fad in town; Voxels!

Voxelator The all new way to turn your boring vector meshes into the new fad in town; Voxels! Notes: I have not tested this on a rotated mesh. With fu

6 Feb 03, 2022
Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions"

Graph Convolution Simulator (GCS) Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions" Requirements: PyTor

yifan 10 Oct 18, 2022
A python script to lookup Passport Index Dataset

visa-cli A python script to lookup Passport Index Dataset Installation pip install visa-cli Usage usage: visa-cli [-h] [-d DESTINATION_COUNTRY] [-f]

rand-net 16 Oct 18, 2022
ML models implementation practice

Let's implement various ML algorithms with numpy/tf Vanilla Neural Network https://towardsdatascience.com/lets-code-a-neural-network-in-plain-numpy-ae

Jinsoo Heo 4 Jul 04, 2021
A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196

img_sussifier A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196 Examples How to use install python pip i

41 Sep 30, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
Indices Matter: Learning to Index for Deep Image Matting

IndexNet Matting This repository includes the official implementation of IndexNet Matting for deep image matting, presented in our paper: Indices Matt

Hao Lu 357 Nov 26, 2022
Improving Compound Activity Classification via Deep Transfer and Representation Learning

Improving Compound Activity Classification via Deep Transfer and Representation Learning This repository is the official implementation of Improving C

NingLab 2 Nov 24, 2021
🔥3D-RecGAN in Tensorflow (ICCV Workshops 2017)

3D Object Reconstruction from a Single Depth View with Adversarial Learning Bo Yang, Hongkai Wen, Sen Wang, Ronald Clark, Andrew Markham, Niki Trigoni

Bo Yang 125 Nov 26, 2022
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri

Cornell RelaxML 4 Sep 08, 2022
Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads-Tutorial-3 Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads Inc 2 Jan 03, 2022
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

5 Jan 04, 2023
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022