MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images (ISBI 2021, MELBA 2021)

Overview

MultiMix

This repository contains the implementation of MultiMix. Our publications for this project are listed below:

"MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images," by Ayaan Haque, Abdullah-Al-Zubaer Imran, Adam Wang, and Demetri Terzopoulos. In ISBI, 2021.

"Generalized Multi-Task Learning from Substantially Unlabeled Multi-Source Medical Image Data," by Ayaan Haque, Abdullah-Al-Zubaer Imran, Adam Wang, and Demetri Terzopoulos. In MELBA, 2021.

Our proposed model performs joint semi-supervised classification and segmentation by employing a confidence-based augmentation strategy for semi-supervised classification along with a novel saliency bridge module that guides segmentation and provides explainability for the joint tasks.

Abstract

Semi-supervised learning via learning from limited quantities of labeled data has been investigated as an alternative to supervised counterparts. Maximizing knowledge gains from copious unlabeled data benefit semi-supervised learning settings. Moreover, learning multiple tasks within the same model further improves model generalizability. We propose a novel multitask learning model, namely MultiMix, which jointly learns disease classification and anatomical segmentation in a sparingly supervised manner, while preserving explainability through bridge saliency between the two tasks. Our extensive experimentation with varied quantities of labeled data in the training sets justify the effectiveness of our multitasking model for the classification of pneumonia and segmentation of lungs from chest X-ray images. Moreover, both in-domain and cross-domain evaluations across the tasks further showcase the potential of our model to adapt to challenging generalization scenarios.

Model

Figure

For sparingly-supervised classification, we leverage data augmentation and pseudo-labeling. We take an unlabeled image and perform two separate augmentations. A single unlabeled image is first weakly augmented, and from that weakly augmented version of the image, a pseudo-label is assumed based on the prediction from the current state of the model. Secondly, the same unlabeled image is then augmented strongly, and a loss is calculated with the pseudo-label from the weakly augmented image and the strongly augmented image itself. Note that this image-label pair is retained only if the confidence with which the model generates the pseudo-label is above a tuned threshold, which prevents the model from learning from incorrect and poor labels.

For sparingly-supervised segmentation, we generate saliency maps based on the predicted classes using the gradients of the encoder. While the segmentation images do not necessarily represent pneumonia, the classification task, the generated maps highlight the lungs, creating images at the final segmentation resolution. These saliency maps can be used to guide the segmentation during the decoder phase, yielding improved segmentation while learning from limited labeled data. In our algorithm, the generated saliency maps are concatenated with the input images, downsampled, and added to the feature maps input to the first decoder stage. Moreover, to ensure consistency, we compute the KL divergence between segmentation predictions for labeled and unlabeled examples. This penalizes the model from making predictions that are increasingly different than those of the labeled data, which helps the model fit more appropriately for the unlabeled data.

Results

A brief summary of our results are shown below. Our algorithm MultiMix is compared to various baselines. In the table, the best fully-supervised scores are underlined and the best semi-supervised scores are bolded.

Results

Boundaries

Code

The code has been written in Python using the Pytorch framework. Training requries a GPU. We provide a Jupyter Notebook, which can be run in Google Colab, containing the algorithm in a usable version. Open MultiMix.ipynb and run it through. The notebook includes annotations to follow along. Open the sample_data folder and use the classification and segmentation sample images for making predictions. Load multimix_trained_model.pth and make predictions on the provided images. Uncomment the training cell to train the model.

Citation

If you find this repo or the paper useful, please cite:

ISBI Paper

@inproceedings{haque2020multimix,
      author={Haque, Ayaan and Imran, Abdullah-Al-Zubaer and Wang, Adam and Terzopoulos, Demetri},
      booktitle={2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)}, 
      title={Multimix: Sparingly-Supervised, Extreme Multitask Learning from Medical Images}, 
      year={2021},
      volume={},
      number={},
      pages={693-696},
      doi={10.1109/ISBI48211.2021.9434167}
}

MELBA Paper

To be released
Owner
Ayaan Haque
“Major League Hacker 💻” Builder 🧱 Learning about learning
Ayaan Haque
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
The "breathing k-means" algorithm with datasets and example notebooks

The Breathing K-Means Algorithm (with examples) The Breathing K-Means is an approximation algorithm for the k-means problem that (on average) is bette

Bernd Fritzke 75 Nov 17, 2022
Plug and play transformer you can find network structure and official complete code by clicking List

Plug-and-play Module Plug and play transformer you can find network structure and official complete code by clicking List The following is to quickly

8 Mar 27, 2022
Unified Interface for Constructing and Managing Workflows on different workflow engines, such as Argo Workflows, Tekton Pipelines, and Apache Airflow.

Couler What is Couler? Couler aims to provide a unified interface for constructing and managing workflows on different workflow engines, such as Argo

Couler Project 781 Jan 03, 2023
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021
This repository attempts to replicate the SqueezeNet architecture and implement the same on an image classification task.

SqueezeNet-Implementation This repository attempts to replicate the SqueezeNet architecture using TensorFlow discussed in the research paper: "Squeeze

Rohan Mathur 3 Dec 13, 2022
Official release of MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis of Pancreatic Cancer axriv: http://arxiv.org/abs/2112.13513

MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis This is the official page of the MSHT with its experimental script and records. We de

Tianyi Zhang 53 Dec 27, 2022
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022
Rust bindings for the C++ api of PyTorch.

tch-rs Rust bindings for the C++ api of PyTorch. The goal of the tch crate is to provide some thin wrappers around the C++ PyTorch api (a.k.a. libtorc

Laurent Mazare 2.3k Dec 30, 2022
A Simulated Optimal Intrusion Response Game

Optimal Intrusion Response An OpenAI Gym interface to a MDP/Markov Game model for optimal intrusion response of a realistic infrastructure simulated u

Kim Hammar 10 Dec 09, 2022
CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary.

CUP-DNN CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary. The model was trained on the expre

1 Oct 27, 2021
LIVECell - A large-scale dataset for label-free live cell segmentation

LIVECell dataset This document contains instructions of how to access the data associated with the submitted manuscript "LIVECell - A large-scale data

Sartorius Corporate Research 112 Jan 07, 2023
Code and data for "TURL: Table Understanding through Representation Learning"

TURL This Repo contains code and data for "TURL: Table Understanding through Representation Learning". Environment and Setup Data Pretraining Finetuni

SunLab-OSU 63 Nov 23, 2022
BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构

BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构。 文档地址:https://basecls.readthedocs.io 安装 安装环境 BaseCls 需要 Python = 3.6。 BaseCls 依赖 M

MEGVII Research 28 Dec 23, 2022
Code from PropMix, accepted at BMVC'21

PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels This repository is the official implementation of Hard Sample Fil

6 Dec 21, 2022
Whisper is a file-based time-series database format for Graphite.

Whisper Overview Whisper is one of three components within the Graphite project: Graphite-Web, a Django-based web application that renders graphs and

Graphite Project 1.2k Dec 25, 2022
SWA Object Detection

SWA Object Detection This project hosts the scripts for training SWA object detectors, as presented in our paper: @article{zhang2020swa, title={SWA

237 Nov 28, 2022
Code for CVPR 2021 paper: Anchor-Free Person Search

Introduction This is the implementationn for Anchor-Free Person Search in CVPR2021 License This project is released under the Apache 2.0 license. Inst

158 Jan 04, 2023
Reference models and tools for Cloud TPUs.

Cloud TPUs This repository is a collection of reference models and tools used with Cloud TPUs. The fastest way to get started training a model on a Cl

5k Jan 05, 2023
Hyperbolic Image Segmentation, CVPR 2022

Hyperbolic Image Segmentation, CVPR 2022 This is the implementation of paper Hyperbolic Image Segmentation (CVPR 2022). Repository structure assets :

Mina Ghadimi Atigh 46 Dec 29, 2022