Mengzi Pretrained Models

Overview

中文 | English

Mengzi

尽管预训练语言模型在 NLP 的各个领域里得到了广泛的应用,但是其高昂的时间和算力成本依然是一个亟需解决的问题。这要求我们在一定的算力约束下,研发出各项指标更优的模型。

我们的目标不是追求更大的模型规模,而是轻量级但更强大,同时对部署和工业落地更友好的模型。

基于语言学信息融入和训练加速等方法,我们研发了 Mengzi 系列模型。由于与 BERT 保持一致的模型结构,Mengzi 模型可以快速替换现有的预训练模型。

详细的技术报告请参考:

Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese

导航

快速上手

Mengzi-BERT

# 使用 Huggingface transformers 加载
from transformers import BertTokenizer, BertModel

tokenizer = BertTokenizer.from_pretrained("Langboat/mengzi-bert-base")
model = BertModel.from_pretrained("Langboat/mengzi-bert-base")

Mengzi-T5

# 使用 Huggingface transformers 加载
from transformers import T5Tokenizer, T5ForConditionalGeneration

tokenizer = T5Tokenizer.from_pretrained("Langboat/mengzi-t5-base")
model = T5ForConditionalGeneration.from_pretrained("Langboat/mengzi-t5-base")

Mengzi-Oscar

参考文档

依赖安装

pip install transformers

下游任务

CLUE 分数

Model AFQMC TNEWS IFLYTEK CMNLI WSC CSL CMRC2018 C3 CHID
RoBERTa-wwm-ext 74.30 57.51 60.80 80.70 67.20 80.67 77.59 67.06 83.78
Mengzi-BERT-base 74.58 57.97 60.68 82.12 87.50 85.40 78.54 71.70 84.16

RoBERTa-wwm-ext 的分数来自 CLUE baseline

对应超参

Task Learning rate Batch size Epochs
AFQMC 3e-5 32 10
TNEWS 3e-5 128 10
IFLYTEK 3e-5 64 10
CMNLI 3e-5 512 10
WSC 8e-6 64 50
CSL 5e-5 128 5
CMRC2018 5e-5 8 5
C3 1e-4 240 3
CHID 5e-5 256 5

下载链接

联系方式

微信讨论群

邮箱

wangyulong[at]chuangxin[dot]com

免责声明

该项目中的内容仅供技术研究参考,不作为任何结论性依据。使用者可以在许可证范围内任意使用该模型,但我们不对因使用该项目内容造成的直接或间接损失负责。技术报告中所呈现的实验结果仅表明在特定数据集和超参组合下的表现,并不能代表各个模型的本质。 实验结果可能因随机数种子,计算设备而发生改变。

使用者以各种方式使用本模型(包括但不限于修改使用、直接使用、通过第三方使用)的过程中,不得以任何方式利用本模型直接或间接从事违反所属法域的法律法规、以及社会公德的行为。使用者需对自身行为负责,因使用本模型引发的一切纠纷,由使用者自行承担全部法律及连带责任。我们不承担任何法律及连带责任。

我们拥有对本免责声明的解释、修改及更新权。

文献引用

@misc{zhang2021mengzi,
      title={Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese}, 
      author={Zhuosheng Zhang and Hanqing Zhang and Keming Chen and Yuhang Guo and Jingyun Hua and Yulong Wang and Ming Zhou},
      year={2021},
      eprint={2110.06696},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
Langboat
Langboat
Send text to girlfriend in the morning

Girlfriend Text Send text to girlfriend (or really anyone with a phone number) in the morning 1. Configure your settings in utils.py. phone_number = "

Paras Adhikary 199 Oct 25, 2022
This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021.

Open Rule Induction This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021. Abstract Rule

Xingran Chen 16 Nov 14, 2022
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Mona Nashaat 44 Apr 25, 2022
PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019

Learning Character-Agnostic Motion for Motion Retargeting in 2D We provide PyTorch implementation for our paper Learning Character-Agnostic Motion for

Rundi Wu 367 Dec 22, 2022
General Vision Benchmark, a project from OpenGVLab

Introduction We build GV-B(General Vision Benchmark) on Classification, Detection, Segmentation and Depth Estimation including 26 datasets for model e

174 Dec 27, 2022
AITUS - An atomatic notr maker for CYTUS

AITUS an automatic note maker for CYTUS. 利用AI根据指定乐曲生成CYTUS游戏谱面。 效果展示:https://www

GradiusTwinbee 6 Feb 24, 2022
This is the code for HOI Transformer

HOI Transformer Code for CVPR 2021 accepted paper End-to-End Human Object Interaction Detection with HOI Transformer. Reproduction We recomend you to

BigBangEpoch 124 Dec 29, 2022
PyTorch implementation of federated learning framework based on the acceleration of global momentum

Federated Learning with Acceleration of Global Momentum PyTorch implementation of federated learning framework based on the acceleration of global mom

0 Dec 23, 2021
CLOOB training (JAX) and inference (JAX and PyTorch)

cloob-training Pretrained models There are two pretrained CLOOB models in this repo at the moment, a 16 epoch and a 32 epoch ViT-B/16 checkpoint train

Katherine Crowson 64 Nov 27, 2022
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning

A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning Website • About • Installation • Using OpenDR

OpenDR 304 Dec 28, 2022
This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural tree born form a large search space

SeBoW: Self-Born Wiring for neural trees(PaddlePaddle version) This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural

HollyLee 13 Dec 08, 2022
WSDM2022 Challenge - Large scale temporal graph link prediction

WSDM 2022 Large-scale Temporal Graph Link Prediction - Baseline and Initial Test Set WSDM Cup Website link Link to this challenge This branch offers A

Deep Graph Library 34 Dec 29, 2022
Ladder Variational Autoencoders (LVAE) in PyTorch

Ladder Variational Autoencoders (LVAE) PyTorch implementation of Ladder Variational Autoencoders (LVAE) [1]: where the variational distributions q at

Andrea Dittadi 63 Dec 22, 2022
Hippocampal segmentation using the UNet network for each axis

Hipposeg Hippocampal segmentation using the UNet network for each axis, inspired by https://github.com/MICLab-Unicamp/e2dhipseg Red: False Positive Gr

Juan Carlos Aguirre Arango 0 Sep 02, 2021
Example-custom-ml-block-keras - Custom Keras ML block example for Edge Impulse

Custom Keras ML block example for Edge Impulse This repository is an example on

Edge Impulse 8 Nov 02, 2022
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation

Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation Introduction 📋 Official implementation of Explainable Robust Learnin

JeongEun Park 6 Apr 19, 2022
Self-Supervised CNN-GCN Autoencoder

GCNDepth Self-Supervised CNN-GCN Autoencoder GCNDepth: Self-supervised monocular depth estimation based on graph convolutional network To be published

53 Dec 14, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023