This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports"

Overview

Introduction: X-Ray Report Generation

This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports". Our work adopts x-ray (also including some history data for patients if there are any) as input, a CNN is used to learn the embedding features for x-ray, as a result, disease-state-style information (Previously, almost all work used detected disease embedding for input of text generation network which could possibly exclude the false negative diseases) is extracted and fed into the text generation network (transformer). To make sure the consistency of detected diseases and generated x-ray reports, we also create a interpreter to enforce the accuracy of the x-ray reports. For details, please refer to here.

Data we used for experiments

We use two datasets for experiments to validate our method:

Performance on two datasets

Datasets Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
Open-I Single-view 0.463 0.310 0.215 0.151 0.186 0.377
Multi-view 0.476 0.324 0.228 0.164 0.192 0.379
Multi-view w/ Clinical History 0.485 0.355 0.273 0.217 0.205 0.422
Full Model (w/ Interpreter) 0.515 0.378 0.293 0.235 0.219 0.436
MIMIC Single-view 0.447 0.290 0.200 0.144 0.186 0.317
Multi-view 0.451 0.292 0.201 0.144 0.185 0.320
Multi-view w/ Clinical History 0.491 0.357 0.276 0.223 0.213 0.389
Full Model (w/ Interpreter) 0.495 0.360 0.278 0.224 0.222 0.390

Environments for running codes

  • Operating System: Ubuntu 18.04

  • Hardware: tested with RTX 2080 TI (11G)

  • Software: tested with PyTorch 1.5.1, Python3.7, CUDA 10.0, tensorboardX, tqdm

  • Anaconda is strongly recommended

  • Other Libraries: Spacy, SentencePiece, nlg-eval

How to use our code for train/test

Step 0: Build your vocabulary model with SentencePiece (tools/vocab_builder.py)

  • Please make sure that you have preprocess the medical reports accurately.
  • We use the top 900 high-frequency words
  • We use 100 unigram tokens extracted from SentencePiece to avoid the out-of-vocabulary situation.
  • In total we have 1000 words and tokens. Update: You can skip step 0 and use the vocabulary files in Vocabulary/*.model

Step 1: Train the LSTM and/or Transformer models, which are just text classifiers, to obtain 14 common disease labels.

  • Use the train_text.py to train the models on your working datasets. For example, the MIMIC-CXR comes with CheXpert labels; you can use these labels as ground-truth to train a differentiable text classifier model. Here the text classifier is a binary predictor (postive/uncertain) = 1 and (negative/unmentioned) = 0.
  • Assume the trained text classifier is perfect and exactly reflects the medical reports. Although this is not the case, in practice, it gives us a good approximation of how good the generated reports are. Human evaluation is also needed to evalutate the generated reports.
  • The goals here are:
  1. Evaluate the performance of the generated reports by comparing the predicted labels and the ground-truth labels.
  2. Use the trained models to fine-tune medical reports' output.

Step 2: Test the text classifier models using the train_text.py with:

  • PHASE = 'TEST'
  • RELOAD = True --> Load the trained models for testing

Step 3: Transfer the trained model to obtain 14 common disease labels for the Open-I datasets and any dataset that doesn't have ground-truth labels.

  • Transfer the learned model to the new dataset by predicting 14 disease labels for the entire dataset by running extract_label.py on the target dataset. The output file is file2label.json
  • Split them into train, validation, and test sets (we have already done that for you, just put the file2label.json in a place where the NLMCXR dataset can see).
  • Build your own text classifier (train_text.py) based on the extracted disease labels (treat them as ground-truth labels).
  • In the end, we want the text classifiers (LSTM/Transformer) to best describe your model's output on the working dataset.

Step 4: Get additional labels using (tools/count_nounphrases.py)

  • Note that 14 disease labels are not enough to generate accurate reports. This is because for the same disease, we might have different ways to express it. For this reason, additional labels are needed to enhance the quality of medical reports.
  • The output of the coun_nounphrases.py is a json file, you can use it as input to the exising datasets such as MIMIC or NLMCXR.
  • Therefore, in total we have 14 disease labels + 100 noun-phrases = 114 disease-related topics/labels. Please check the appendix in our paper.

Step 5: Train the ClsGen model (Classifier-Generator) with train_full.py

  • PHASE = 'TRAIN'
  • RELOAD = False --> We trained our model from scratch

Step 6: Train the ClsGenInt model (Classifier-Generator-Interpreter) with train_full.py

  • PHASE = 'TRAIN'
  • RELOAD = True --> Load the ClsGen trained from the step 4, load the Interpreter model from Step 1 or 3
  • Reduce the learning rate --> Since the ClsGen has already converged, we need to reduce the learning rate to fine-tune the word representation such that it minimize the interpreter error.

Step 7: Generate the outputs

  • Use the infer function in the train_full.py to generate the outputs. This infer function ensures that no ground-truth labels and medical reports are being used in the inference phase (we used teacher forcing / ground-truth labels during training phase).
  • Also specify the threshold parameter, see the appendix of our paper on which threshold to choose from.
  • Final specify your the name of your output files.

Step 8: Evaluate the generated reports.

  • Use the trained text classifier model in step 1 to evaluate the clinical accuracy
  • Use the nlg-eval library to compute BLEU-1 to BLEU-4 scores and other metrics.

Our pretrained models

Our model is uploaded in google drive, please download the model from

Model Name Download Link
Our Model for MIMIC Google Drive
Our Model for NLMCXR Google Drive

Citation

If it is helpful to you, please cite our work:

@inproceedings{nguyen-etal-2021-automated,
    title = "Automated Generation of Accurate {\&} Fluent Medical {X}-ray Reports",
    author = "Nguyen, Hoang  and
      Nie, Dong  and
      Badamdorj, Taivanbat  and
      Liu, Yujie  and
      Zhu, Yingying  and
      Truong, Jason  and
      Cheng, Li",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.288",
    doi = "10.18653/v1/2021.emnlp-main.288",
    pages = "3552--3569",
}

Owner
no name
no name
U-Net Brain Tumor Segmentation

U-Net Brain Tumor Segmentation 🚀 :Feb 2019 the data processing implementation in this repo is not the fastest way (code need update, contribution is

Hao 448 Jan 02, 2023
Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021 The code for training mCOLT/mRASP2, a multilingua

104 Jan 01, 2023
Package to compute Mauve, a similarity score between neural text and human text. Install with `pip install mauve-text`.

MAUVE MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE

Krishna Pillutla 182 Jan 02, 2023
Viperdb - A tiny log-structured key-value database written in pure Python

ViperDB 🐍 ViperDB is a lightweight embedded key-value store written in pure Pyt

17 Oct 17, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
🛠️ SLAMcore SLAM Utilities

slamcore_utils Description This repo contains the slamcore-setup-dataset script. It can be used for installing a sample dataset for offline testing an

SLAMcore 7 Aug 04, 2022
PyTorch implementation of: Michieli U. and Zanuttigh P., "Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations", CVPR 2021.

Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations This is the official PyTorch implementation

Multimedia Technology and Telecommunication Lab 42 Nov 09, 2022
Most popular metrics used to evaluate object detection algorithms.

Most popular metrics used to evaluate object detection algorithms.

Rafael Padilla 4.4k Dec 25, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
Code for Mining the Benefits of Two-stage and One-stage HOI Detection

Status: Archive (code is provided as-is, no updates expected) PPO-EWMA [Paper] This is code for training agents using PPO-EWMA and PPG-EWMA, introduce

OpenAI 33 Dec 15, 2022
MassiveSumm: a very large-scale, very multilingual, news summarisation dataset

MassiveSumm: a very large-scale, very multilingual, news summarisation dataset This repository contains links to data and code to fetch and reproduce

Daniel Varab 19 Dec 16, 2022
Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Resilience from Diversity: Population-based approach to harden models against adversarial attacks Requirements To install requirements: pip install -r

0 Nov 23, 2021
DI-HPC is an acceleration operator component for general algorithm modules in reinforcement learning algorithms

DI-HPC: Decision Intelligence - High Performance Computation DI-HPC is an acceleration operator component for general algorithm modules in reinforceme

OpenDILab 185 Dec 29, 2022
The source code of CVPR17 'Generative Face Completion'.

GenerativeFaceCompletion Matcaffe implementation of our CVPR17 paper on face completion. In each panel from left to right: original face, masked input

Yijun Li 313 Oct 18, 2022
Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation

Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation Our paper is accepted by ICCV2021. Picture: Overview of the proposed Plug-an

Yunfei Liu 32 Dec 10, 2022
AIR^2 for Interaction Prediction

This is the repository for AIR^2 for Interaction Prediction. Explanation of the solution: Video: link License AIR is released under the Apache 2.0 lic

21 Sep 27, 2022
The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022

DG-TrajGen The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022. Our Meth

Wang 25 Sep 26, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Jan 06, 2023
Code for Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021)

Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021) Single-cause Perturbation (SCP) is a framework to estimate the m

Zhaozhi Qian 9 Sep 28, 2022