Simulation code and tutorial for BBHnet training data

Overview

Simulation Dataset for BBHnet

NOTE: OLD README, UPDATE IN PROGRESS

We generate simulation dataset to train BBHnet, our deep learning framework for detection of compact binary coalescene (CBC) gravitational-wave (GW) signals .

Example

To generate a noise dataset, simply run generateRealNoise.py:

python generateRealNoise.py -t0 1186729980 -t1 1186734086 -t0-psd 1186729980 -t1-psd 1186734086
    -fs 1024 -fmin 20 -o test_noise.h5

To also add CBC signals, enable the flag -S and add the prior distribution file in Bilby format with -p

python generateRealNoise.py -t0 1186729980 -t1 1186734086 -t0-psd 1186729980 -t1-psd 1186734086
    -fs 1024 -fmin 20 -S -p config/priors/nonspin_BBH.prior -o test_signal.h5

A full list of generateRealNoise.py arguments can be found below:

usage: generateRealNoise.py [-h] -t0 FRAME_START -t1 FRAME_STOP -t0-psd FRAME_START_PSD -t1-psd FRAME_STOP_PSD -o OUTFILE [-S]
                            [-fs SAMPLE_RATE] [-fmin HIGH_PASS] [-T SAMPLE_DURATION] [-dt TIME_STEP] [-p PRIOR_FILE]
                            [--correlation-shift CORRELATION_SHIFT] [--min-trigger MIN_TRIGGER] [--max-trigger MAX_TRIGGER]
                            [-s SEED]

optional arguments:
  -h, --help            show this help message and exit
  -t0 FRAME_START, --frame-start FRAME_START
                        starting GPS time of strain
  -t1 FRAME_STOP, --frame-stop FRAME_STOP
                        stopping GPS time of strain
  -t0-psd FRAME_START_PSD, --frame-start-psd FRAME_START_PSD
                        starting GPS time of strain for PSD estimation
  -t1-psd FRAME_STOP_PSD, --frame-stop-psd FRAME_STOP_PSD
                        stopping GPS time of strain for PSD estimation
  -o OUTFILE, --outfile OUTFILE
                        path to write output file in HDF5 format
  -S, --signal          Enable to add GW signal on top of background noise
  -fs SAMPLE_RATE, --sample-rate SAMPLE_RATE
                        sampling rate of strain
  -fmin HIGH_PASS, --high-pass HIGH_PASS
                        frequency of highpass filter
  -T SAMPLE_DURATION, --sample-duration SAMPLE_DURATION
                        duration in seconds of each sample
  -dt TIME_STEP, --time-step TIME_STEP
                        time step size in seconds between consecutive samples
  -p PRIOR_FILE, --prior-file PRIOR_FILE
                        path to prior config file. Required for signal simulation
  --correlation-shift CORRELATION_SHIFT
                        if given, also compute the correlation with given shift value
  --min-trigger MIN_TRIGGER
                        mininum trigger time w.r.t to sample. must be within [0, sample_duration]
  --max-trigger MAX_TRIGGER
                        maximum trigger time w.r.t to sample. must be within [0, sample_duration]
  -s SEED, --seed SEED  random seed for reproducibility

Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification

Fine-grainedImageClassification Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification We trained model here: lin

ZhenchaoTang 14 Oct 21, 2022
This is an official implementation of the High-Resolution Transformer for Dense Prediction.

High-Resolution Transformer for Dense Prediction Introduction This is the official implementation of High-Resolution Transformer (HRT). We present a H

HRNet 403 Dec 13, 2022
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

514 Dec 28, 2022
[IEEE TPAMI21] MobileSal: Extremely Efficient RGB-D Salient Object Detection [PyTorch & Jittor]

MobileSal IEEE TPAMI 2021: MobileSal: Extremely Efficient RGB-D Salient Object Detection This repository contains full training & testing code, and pr

Yu-Huan Wu 52 Jan 06, 2023
Differential fuzzing for the masses!

NEZHA NEZHA is an efficient and domain-independent differential fuzzer developed at Columbia University. NEZHA exploits the behavioral asymmetries bet

147 Dec 05, 2022
Exploit ILP to learn symmetry breaking constraints of ASP programs.

ILP Symmetry Breaking Overview This project aims to exploit inductive logic programming to lift symmetry breaking constraints of ASP programs. Given a

Research Group Production Systems 1 Apr 13, 2022
This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

MOTR: End-to-End Multiple-Object Tracking with TRansformer This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object

348 Jan 07, 2023
In this project we predict the forest cover type using the cartographic variables in the training/test datasets.

Kaggle Competition: Forest Cover Type Prediction In this project we predict the forest cover type (the predominant kind of tree cover) using the carto

Marianne Joy Leano 1 Mar 15, 2022
Toolbox of models, callbacks, and datasets for AI/ML researchers.

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch Website • Installation • Main

Pytorch Lightning 1.4k Dec 30, 2022
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

459 Dec 27, 2022
v objective diffusion inference code for JAX.

v-diffusion-jax v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The models

Katherine Crowson 186 Dec 21, 2022
This repository contains the code for our paper VDA (public in EMNLP2021 main conference)

Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models This repository contains the code for our paper VDA (publ

RUCAIBox 13 Aug 06, 2022
An implementation of EWC with PyTorch

EWC.pytorch An implementation of Elastic Weight Consolidation (EWC), proposed in James Kirkpatrick et al. Overcoming catastrophic forgetting in neural

Ryuichiro Hataya 166 Dec 22, 2022
A curated list of awesome projects and resources related fastai

A curated list of awesome projects and resources related fastai

Tanishq Abraham 138 Dec 22, 2022
Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach

Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach This is the implementation of traffic prediction code in DTMP based on PyTo

chenxin 1 Dec 19, 2021
Haze Removal can remove slight to extreme cases of haze affecting an image

Haze Removal can remove slight to extreme cases of haze affecting an image. Its most typical use is for landscape photography where the haze causes low contrast and low saturation, but it can also be

Grace Ugochi Nneji 3 Feb 15, 2022
A set of examples around hub for creating and processing datasets

Examples for Hub - Dataset Format for AI A repository showcasing examples of using Hub Uploading Dataset Places365 Colab Tutorials Notebook Link Getti

Activeloop 11 Dec 14, 2022
Betafold - AlphaFold with tunings

BetaFold We (hegelab.org) craeted this standalone AlphaFold (AlphaFold-Multimer,

2 Aug 11, 2022
The official implementation of ICCV paper "Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds".

Box-Aware Tracker (BAT) Pytorch-Lightning implementation of the Box-Aware Tracker. Box-Aware Feature Enhancement for Single Object Tracking on Point C

Kangel Zenn 5 Mar 26, 2022
An interactive DNN Model deployed on web that predicts the chance of heart failure for a patient with an accuracy of 98%

Heart Failure Predictor About A Web UI deployed Dense Neural Network Model Made using Tensorflow that predicts whether the patient is healthy or has c

Adit Ahmedabadi 0 Jan 09, 2022