An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns)

Overview

GLOM - Pytorch (wip)

An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns) for emergent part-whole heirarchies from data.

Citations

@misc{hinton2021represent,
    title   = {How to represent part-whole hierarchies in a neural network}, 
    author  = {Geoffrey Hinton},
    year    = {2021},
    eprint  = {2102.12627},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
Comments
  • help

    help

    Hello, when I tried to reproduce your model, I got this error. I'm not sure how to correct it, can y help me?

    Traceback (most recent call last): File "main.py", line 172, in outputs = custom_model(images,iters = 12) File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "/root/class/glom_pytorch/glom_pytorch.py", line 109, in forward consensus = self.attention(levels) File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 727, in call_impl result = self.forward(*input, **kwargs) File "/root/class/glom_pytorch/glom_pytorch.py", line 49, in forward sim.masked_fill(self_mask, TOKEN_ATTEND_SELF_VALUE) RuntimeError: Expected object of scalar type Bool but got scalar type Float for argument #2 'mask' in call to th_masked_fill_bool

    opened by DDxk369 1
  • Levels token

    Levels token

    Hello, thank you for your good work. I was trying to implement the idea you shared in this todo:

    https://github.com/lucidrains/glom-pytorch/projects/1#card-56284841

    The text reads: allow each level to be represented by a list of tokens, updated with attention, simliar to https://github.com/lucidrains/transformer-in-transformer

    I was going to implement it with a simple token at each level, but I was wondering if you had any suggestion on how to implement it correctly. Thank you.

    opened by zenos4mbu 0
  • Implementing geometric mean for consensus opinion/levels_mean

    Implementing geometric mean for consensus opinion/levels_mean

    Hi, I'm trying to implement the consensus opinion (levels_mean) as a geometric mean of the top-down predictions, bottom-up predictions, attention-weighted average of same-level embeddings, and embeddings of the previous time step as described by the original paper. Any ideas on how the weights should be set?

    At first I thought this could be a learnable parameter, but section 9.1 reads

    For interpreting a static image with no temporal context, the weights used for this weighted geometric mean need to change during the iterations that occur after a new fixation.

    which leads me to believe that these might need to be outputted on the fly a la vanilla attention as opposed to being learned. Maybe an MLP that takes in the four source embeddings and outputs four scalars as weights?

    opened by ryan-caesar-ramos 0
  • Classification

    Classification

    Hi @lucidrains ! Do you have any idea/insight on how to supervise classification (let's say, for example, MNIST digits classification) after having trained GLOM in an unsupervised way as a denoising autoencoder? In the paper that seems to be the final goal. However, it's not clear to me which columns and/or levels should be used for the classification. Also, since GLOM it's dealing with patches, how can single black patches vote towards a certain digit?

    In other words, after training GLOM as a denoising autoencoder on MNIST, what we have is:

    • p X p columns, where p is the number of patches per dimension (e.g. 7X7=49 patches)
    • 6 levels for each column, where the top-most levels should in theory represent higher-level entities, so it seems natural to search for the digit information in these layers
    • 6*2=12 iterations, to allow for information to be passed by both top-down and bottom-up networks

    Just by applying dimensionality reduction on the top-most level at different iterations does not seem enough to make the digit clusters emerge. So I'm wondering if you (or anybody else) have some insights on this. Cheers!

    opened by A7ocin 1
  • Bug in forward?

    Bug in forward?

    Hello, thank you for making this code available! I think there could be a potential bug in the first line of the forward function:

    b, h, w, _, device = *img.shape, img.device

    but the input image shape is of kind b c h w, so it could be fixed by replacing it with

    b, _, h, w, device = *img.shape, img.device

    Am I wrong?

    opened by A7ocin 9
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
Pseudo-mask Matters in Weakly-supervised Semantic Segmentation

Pseudo-mask Matters in Weakly-supervised Semantic Segmentation By Yi Li, Zhanghui Kuang, Liyang Liu, Yimin Chen, Wayne Zhang SenseTime, Tsinghua Unive

33 Oct 14, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation Ported from https://github.com/hzwer/arXiv2020-RIFE Dependencies NumPy

49 Jan 07, 2023
Language-Agnostic Website Embedding and Classification

Homepage2Vec Language-Agnostic Website Embedding and Classification based on Curlie labels https://arxiv.org/pdf/2201.03677.pdf Homepage2Vec is a pre-

25 Dec 27, 2022
My personal code and solution to the Synacor Challenge from 2012 OSCON.

Synacor OSCON Challenge Solution (2012) This repository contains my code and solution to solve the Synacor OSCON 2012 Challenge. If you are interested

2 Mar 20, 2022
Tensorflow 2.x based implementation of EDSR, WDSR and SRGAN for single image super-resolution

Single Image Super-Resolution with EDSR, WDSR and SRGAN A Tensorflow 2.x based implementation of Enhanced Deep Residual Networks for Single Image Supe

Martin Krasser 1.3k Jan 06, 2023
Use .csv files to record, play and evaluate motion capture data.

Purpose These scripts allow you to record mocap data to, and play from .csv files. This approach facilitates parsing of body movement data in statisti

21 Dec 12, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and different optimization choices

deep_nn_model_with_only_python_100%_test_accuracy deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and differen

0 Aug 28, 2022
Source Code for Simulations in the Publication "Can the brain use waves to solve planning problems?"

Code for Simulations in the Publication Can the brain use waves to solve planning problems? Installing Required Python Packages Please use Python vers

EMD Group 2 Jul 01, 2022
Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021)

Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021) Introduction This is the official repository for the PyTorch implementation

165 Dec 07, 2022
This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch.

MPDL---TODO This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch. Ci

CodebaseLi 3 Nov 27, 2022
A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.

NeRF-pytorch NeRF (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are

Yen-Chen Lin 3.2k Jan 08, 2023
EMNLP 2021 - Frustratingly Simple Pretraining Alternatives to Masked Language Modeling

Frustratingly Simple Pretraining Alternatives to Masked Language Modeling This is the official implementation for "Frustratingly Simple Pretraining Al

Atsuki Yamaguchi 31 Nov 18, 2022
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

hhhusiyi 96 Dec 22, 2022
E-Ink Magic Calendar that automatically syncs to Google Calendar and runs off a battery powered Raspberry Pi Zero

MagInkCal This repo contains the code needed to drive an E-Ink Magic Calendar that uses a battery powered (PiSugar2) Raspberry Pi Zero WH to retrieve

2.8k Dec 28, 2022
K Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching (To appear in RA-L 2022)

KCP The official implementation of KCP: k Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching, accepted for p

Yu-Kai Lin 109 Dec 14, 2022
Codes and Data Processing Files for our paper.

Code Scripts and Processing Files for EEG Sleep Staging Paper 1. Folder Tree ./src_preprocess (data preprocessing files for SHHS and Sleep EDF) sleepE

Chaoqi Yang 18 Dec 12, 2022
Apply our monocular depth boosting to your own network!

MergeNet - Boost Your Own Depth Boost custom or edited monocular depth maps using MergeNet Input Original result After manual editing of base You can

Computational Photography Lab @ SFU 142 Dec 17, 2022
Trading environnement for RL agents, backtesting and training.

TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L

Tony Denion 164 Oct 30, 2022
Apply a perspective transformation to a raster image inside Inkscape (no need to use an external software such as GIMP or Krita).

Raster Perspective Apply a perspective transformation to bitmap image using the selected path as envelope, without the need to use an external softwar

s.ouchene 19 Dec 22, 2022