Code for Referring Image Segmentation via Cross-Modal Progressive Comprehension, CVPR2020.

Overview

CMPC-Refseg

Code of our CVPR 2020 paper Referring Image Segmentation via Cross-Modal Progressive Comprehension.

Shaofei Huang*, Tianrui Hui*, Si Liu, Guanbin Li, Yunchao Wei, Jizhong Han, Luoqi Liu, Bo Li (* Equal contribution)

Interpretation of CMPC.

  • (a) Input referring expression and image.

  • (b) The model first perceives all the entities described in the expression based on entity words and attribute words, e.g., “man” and “white frisbee” (orange masks and blue outline).

  • (c) After finding out all the candidate entities that may match with input expression, relational word “holding” can be further exploited to highlight the entity involved with the relationship (green arrow) and suppress the others which are not involved.

  • (d) Benefiting from the relation-aware reasoning process, the referred entity is found as the final prediction (purple mask). interpretation

Experimental Results

We modify the way of feature concatenation in the end of CMPC module and achieve higher performances than the results reported in our paper. New experimental results are summarized in the table bellow. You can download our trained checkpoints to test on the four datasets. The link to the checkpoints is: Baidu Drive, pswd: jjsf.

Method UNC val UNC testA UNC testB UNC+ val UNC+ testA UNC+ testB G-Ref val ReferIt test
STEP-ICCV19 [1] 60.04 63.46 57.97 48.19 52.33 40.41 46.40 64.13
Ours-CVPR20 61.36 64.53 59.64 49.56 53.44 43.23 49.05 65.53
Ours-Updated 62.47 65.08 60.82 50.25 54.04 43.47 49.89 65.58

Setup

We recommended the following dependencies.

  • Python 2.7
  • TensorFlow 1.5
  • Numpy
  • pydensecrf

This code is derived from RRN [2]. Please refer to it for more details of setup.

Data Preparation

  • Dataset Preprocessing

We conduct experiments on 4 datasets of referring image segmentation, including UNC, UNC+, Gref and ReferIt. After downloading these datasets, you can run the following commands for data preparation:

python build_batches.py -d Gref -t train
python build_batches.py -d Gref -t val
python build_batches.py -d unc -t train
python build_batches.py -d unc -t val
python build_batches.py -d unc -t testA
python build_batches.py -d unc -t testB
python build_batches.py -d unc+ -t train
python build_batches.py -d unc+ -t val
python build_batches.py -d unc+ -t testA
python build_batches.py -d unc+ -t testB
python build_batches.py -d referit -t trainval
python build_batches.py -d referit -t test
  • Glove Embedding

Download Gref_emb.npy and referit_emb.npy and put them in data/. We provide download link for Glove Embedding here: Baidu Drive, password: 2m28.

Training

Train on UNC training set with:

python -u trainval_model.py -m train -d unc -t train -n CMPC_model -emb -f ckpts/unc/cmpc_model

Testing

Test on UNC validation set with:

python -u trainval_model.py -m test -d unc -t val -n CMPC_model -i 700000 -c -emb -f ckpts/unc/cmpc_model

CMPC for video referring segmentation

We release video version code for CMPC on A2D dataset under CMPC_video/.

Reference

[1] Chen, Ding-Jie, et al. "See-through-text grouping for referring image segmentation." Proceedings of the IEEE International Conference on Computer Vision. 2019.

[2] Li, Ruiyu, et al. "Referring image segmentation via recurrent refinement networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

Citation

If our CMPC is useful to your research, please consider citing:

@inproceedings{huang2020referring,
  title={Referring Image Segmentation via Cross-Modal Progressive Comprehension},
  author={Huang, Shaofei and Hui, Tianrui and Liu, Si and Li, Guanbin and Wei, Yunchao and Han, Jizhong and Liu, Luoqi and Li, Bo},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={10488--10497},
  year={2020}
}
Owner
spyflying
Two students of Cola Lab, BUAA.
spyflying
A note taker for NVDA. Allows the user to create, edit, view, manage and export notes to different formats.

Quick Notetaker add-on for NVDA The Quick Notetaker add-on is a wonderful tool which allows writing notes quickly and easily anytime and from any app

5 Dec 06, 2022
An official implementation of MobileStyleGAN in PyTorch

MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis Official PyTorch Implementation The accompanying videos c

Sergei Belousov 602 Jan 07, 2023
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins

BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins Deep learning has brought most profound contributio

Narinder Singh Punn 12 Dec 04, 2022
Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021)

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
HuSpaCy: industrial-strength Hungarian natural language processing

HuSpaCy: Industrial-strength Hungarian NLP HuSpaCy is a spaCy model and a library providing industrial-strength Hungarian language processing faciliti

HuSpaCy 120 Dec 14, 2022
PyTorch-Geometric Implementation of MarkovGNN: Graph Neural Networks on Markov Diffusion

MarkovGNN This is the official PyTorch-Geometric implementation of MarkovGNN paper under the title "MarkovGNN: Graph Neural Networks on Markov Diffusi

HipGraph: High-Performance Graph Analytics and Learning 6 Sep 23, 2022
Segcache: a memory-efficient and scalable in-memory key-value cache for small objects

Segcache: a memory-efficient and scalable in-memory key-value cache for small objects This repo contains the code of Segcache described in the followi

TheSys Group @ CMU CS 78 Jan 07, 2023
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers.

Contra-OOD Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers. Requirements PyTorch Transformers datasets

Wenxuan Zhou 27 Oct 28, 2022
TransPrompt - Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification

TransPrompt This code is implement for our EMNLP 2021's paper 《TransPrompt:Towards an Automatic Transferable Prompting Framework for Few-shot Text Cla

WangJianing 23 Dec 21, 2022
A transformer model to predict pathogenic mutations

MutFormer MutFormer is an application of the BERT (Bidirectional Encoder Representations from Transformers) NLP (Natural Language Processing) model wi

Wang Genomics Lab 2 Nov 29, 2022
Language Models Can See: Plugging Visual Controls in Text Generation

Language Models Can See: Plugging Visual Controls in Text Generation Authors: Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani Yogatama, Yan Wang, Lin

Yixuan Su 195 Dec 22, 2022
Face Mask Detection on Image and Video using tensorflow and keras

Face-Mask-Detection Face Mask Detection on Image and Video using tensorflow and keras Train Neural Network on face-mask dataset using tensorflow and k

Nahid Ebrahimian 12 Nov 11, 2022
Official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

Vision Transformer with Progressive Sampling This is the official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

yuexy 123 Jan 01, 2023
code for `Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation`

Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation (CVPR 2021) Introduction PBR is a conceptually simple yet effective

H.Chen 143 Jan 05, 2023
HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Nermin Samet 53 Dec 04, 2022
GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

564 Jan 02, 2023
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022
Official Implementation of "DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization."

DialogLM Code for AAAI 2022 paper: DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. Pre-trained Models We release two ve

Microsoft 92 Dec 19, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

❤️ A Toolkit for Document-level Event Extraction with & without Triggers Hi, there 👋 . Thanks for your stay in this repo. This project aims at buildi

Tong Zhu(朱桐) 159 Dec 22, 2022