Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation

Related tags

Deep LearningSST
Overview

Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation

This repository contains the Pytorch implementation of the proposed method Self-Supervised Generative Style Transfer for One-Shot Medical ImageSegmentation , which has been recently accepted at WACV 2022.

Dependencies

We prefer to have a separate anaconda environment and the following packages to be installed.

  1. Python == 3.7
  2. tensorflow-mkl == 1.15
  3. pytorch == 1.6.0
  4. torchvision == 0.7.0
  5. pytorch-msssim == 0.2.1
  6. medpy == 0.4.0
  7. rasterfairy == 1.0.6
  8. visdom

Training Modes

The implementaion of our method is available in the folder OURS.

  1. Train FlowModel without Appearance Model.
python train.py --ngpus 1  --batch_size 4 --checkpoints_dir_pretrained ./candi_checkpoints_pretrained --dataroot ../CANDIShare_clean_gz --train_mode ae --nepochs 10
  1. Train StyleEncoder
python train.py --ngpus 1 --batch_size 16 --checkpoints_dir_pretrained ./candi_checkpoints_pretrained --dataroot ../CANDIShare_clean_gz --train_mode style_moco --nepochs 10
  1. Train Appearance Model
python train.py --ngpus 1 --batch_size 1 --checkpoints_dir_pretrained ./candi_checkpoints_pretrained --dataroot ../CANDIShare_clean_gz --train_mode appearance_only --nepochs 10
  1. Train Adversarial Autoencoder Flow
python train.py --ngpus 1 --batch_size 2 --checkpoints_dir_pretrained ./candi_checkpoints_pretrained --train_mode aae --nepochs 100
  1. Train End to End
python train.py --ngpus 1 --batch_size 1 --checkpoints_dir ./candi_checkpoints --checkpoints_dir_pretrained ./candi_checkpoints_pretrained --dataroot ../CANDIShare_clean_gz --train_mode end_to_end --nepochs 10

For training on OASIS dataset, please change the --dataroot argument to OASIS_clean and --nepochs 1.

Training Steps

  1. First train Unet based flow model by running 1. from Train Modes. This will be used to generate images of same styles for training the style encoder.

  2. Pre-train style-encoder by running 2. from Train Modes. This will pre-train our style encoder using volumetric contrastive loss.

  3. Train end-to-end by running 5. from Train Modes. This will train Appearance Model, Style Encoder and Flow Model end to end using pre-trained Style Encoder. set --use_pretrain to False for training Style Encoder from scratch.

  4. Generate Flow Fields in the folder ../FlowFields using trained end-to-end model by running the following command:
    python generate_flow.py

  5. Train Flow Adversarial Autoencoder by running 4. from Train Modes.

  6. Generate image segmentation pairs using python generate_fake_data.py.

  7. Train 3D Unet on the generated image segmentation dataset using the code provided in folder UNET and the following command:

python train.py --exp <NAME OF THE EXPERIMENT> --dataset_name CANDI_generated --dataset_path <PATH TO GENERATED DATASET>

Schematic description of the training phase

Evaluation Script

All evaluation scripts used to generate plots and compute dice score are included in the folder evaluations. To run a particular evaluation, run the following command provinding corresponding opt from the file run_evaluations.py:
python run_evaluations.py <opt>

Pre-trained Models

All pre trained models and datasets can be obtained from here. Please unzip the trained models inside the directory submission_id_675/code/OURS.


Citation

You can find the Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation paper at http://arxiv.org/abs/2110.02117

If you find this work useful, please cite the paper:

@misc{tomar2021selfsupervised,
    title={Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation},
    author={Devavrat Tomar and Behzad Bozorgtabar and Manana Lortkipanidze and Guillaume Vray and Mohammad Saeed Rad and Jean-Philippe Thiran},
    year={2021},
    eprint={2110.02117},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

Licence

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Owner
Devavrat Tomar
Devavrat Tomar
Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing w

Chen Liang 13 Nov 23, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
The project covers common metrics for super-resolution performance evaluation.

Super-Resolution Performance Evaluation Code The project covers common metrics for super-resolution performance evaluation. Metrics support The script

xmy 10 Aug 03, 2022
Semi-Supervised Learning, Object Detection, ICCV2021

End-to-End Semi-Supervised Object Detection with Soft Teacher By Mengde Xu*, Zheng Zhang*, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang Bai,

Microsoft 789 Dec 27, 2022
Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation

Info This is the code repository of the work Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation from Elias T

2 Apr 20, 2022
Synthesizing and manipulating 2048x1024 images with conditional GANs

pix2pixHD Project | Youtube | Paper Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic image-to-image translatio

NVIDIA Corporation 6k Dec 27, 2022
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization

ScottYuan 7 Jan 05, 2023
CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP

CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP Andreas Fürst* 1, Elisabeth Rumetshofer* 1, Viet Tran1, Hubert Ramsauer1, Fei Tang3, Joh

Institute for Machine Learning, Johannes Kepler University Linz 133 Jan 04, 2023
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
Resilient projection-based consensus actor-critic (RPBCAC) algorithm

Resilient projection-based consensus actor-critic (RPBCAC) algorithm We implement the RPBCAC algorithm with nonlinear approximation from [1] and focus

Martin Figura 5 Jul 12, 2022
Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO)

KernelFunctionalOptimisation Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO) We have conducted all our experiments

2 Jun 29, 2022
This is implementation of AlexNet(2012) with 3D Convolution on TensorFlow (AlexNet 3D).

AlexNet_3dConv TensorFlow implementation of AlexNet(2012) by Alex Krizhevsky, with 3D convolutiional layers. 3D AlexNet Network with a standart AlexNe

Denis Timonin 41 Jan 16, 2022
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more

Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame

1.4k Jan 07, 2023
A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Dying Light 2 PAKFile Utility A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers. This tool aims to make PAKFile (.pak files) modding a

RHQ Online 12 Aug 26, 2022
Codes for NAACL 2021 Paper "Unsupervised Multi-hop Question Answering by Question Generation"

Unsupervised-Multi-hop-QA This repository contains code and models for the paper: Unsupervised Multi-hop Question Answering by Question Generation (NA

Liangming Pan 70 Nov 27, 2022
Localized representation learning from Vision and Text (LoVT)

Localized Vision-Text Pre-Training Contrastive learning has proven effective for pre- training image models on unlabeled data and achieved great resul

Philip Müller 10 Dec 07, 2022
An implementation of the WHATWG URL Standard in JavaScript

whatwg-url whatwg-url is a full implementation of the WHATWG URL Standard. It can be used standalone, but it also exposes a lot of the internal algori

314 Dec 28, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
An ML & Correlation platform for transforming disparate data points of interest into usable intelligence.

SSIDprobeCollector An ML & Correlation platform for transforming disparate data points of interest into usable intelligence. At a High level the platf

Bill Reyor 1 Jan 30, 2022
CMP 414/765 course repository for Spring 2022 semester

CMP414/765: Artificial Intelligence Spring2021 This is the GitHub repository for course CMP 414/765: Artificial Intelligence taught at The City Univer

ch00226855 4 May 16, 2022