Implementation of the "Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos" paper.

Overview

Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos

Introduction

Point cloud videos exhibit irregularities and lack of order along the spatial dimension where points emerge inconsistently across different frames. To capture the dynamics in point cloud videos, point tracking is usually employed. However, as points may flow in and out across frames, computing accurate point trajectories is extremely difficult. Moreover, tracking usually relies on point colors and thus may fail to handle colorless point clouds. In this paper, to avoid point tracking, we propose a novel Point 4D Transformer (P4Transformer) network to model raw point cloud videos. Specifically, P4Transformer consists of (i) a point 4D convolution to embed the spatio-temporal local structures presented in a point cloud video and (ii) a transformer to capture the appearance and motion information across the entire video by performing self-attention on the embedded local features. In this fashion, related or similar local areas are merged with attention weight rather than by explicit tracking.

Installation

The code is tested with Red Hat Enterprise Linux Workstation release 7.7 (Maipo), g++ (GCC) 8.3.1, PyTorch (both v1.4.0 and v1.8.1 are supported), CUDA 10.2 and cuDNN v7.6.

Compile the CUDA layers for PointNet++, which we used for furthest point sampling (FPS) and radius neighbouring search:

mv modules-pytorch-1.4.0/modules-pytorch-1.8.1 modules
cd modules
python setup.py install

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{fan21p4transformer,
  author    = {Hehe Fan and
               Yi Yang and
               Mohan Kankanhalli},
  title     = {Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos},
  booktitle = {{IEEE/CVF} Conference on Computer Vision and Pattern Recognition, {CVPR}},
  year      = {2021}
}

Related Repos

  1. PointNet++ PyTorch implementation: https://github.com/facebookresearch/votenet/tree/master/pointnet2
  2. MeteorNet: https://github.com/xingyul/meteornet
  3. 3DV: https://github.com/3huo/3DV-Action
  4. PSTNet: https://github.com/hehefan/Point-Spatio-Temporal-Convolution
  5. Transformer: https://github.com/lucidrains/vit-pytorch
  6. PointRNN (TensorFlow implementation): https://github.com/hehefan/PointRNN
  7. PointRNN (PyTorch implementation): https://github.com/hehefan/PointRNN-PyTorch
Owner
Hehe Fan
Research fellow at the National University of Singapore.
Hehe Fan
A denoising diffusion probabilistic model synthesises galaxies that are qualitatively and physically indistinguishable from the real thing.

Realistic galaxy simulation via score-based generative models Official code for 'Realistic galaxy simulation via score-based generative models'. We us

Michael Smith 32 Dec 20, 2022
Repository for the paper "From global to local MDI variable importances for random forests and when they are Shapley values"

From global to local MDI variable importances for random forests and when they are Shapley values Antonio Sutera ( Antonio Sutera 3 Feb 23, 2022

This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.

Amortized Assimilation This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems. Abstract: T

4 Aug 16, 2022
CNN designed for pansharpening

PROGRESSIVE BAND-SEPARATED CONVOLUTIONAL NEURAL NETWORK FOR MULTISPECTRAL PANSHARPENING This repository contains main code for the paper PROGRESSIVE B

SerendipitysX 3 Dec 29, 2021
Expressive Power of Invariant and Equivaraint Graph Neural Networks (ICLR 2021)

Expressive Power of Invariant and Equivaraint Graph Neural Networks In this repository, we show how to use powerful GNN (2-FGNN) to solve a graph alig

Marc Lelarge 36 Dec 12, 2022
Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

68 Dec 21, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
Yet Another Reinforcement Learning Tutorial

This repo contains self-contained RL implementations

Sungjoon 65 Dec 10, 2022
Fast Differentiable Matrix Sqrt Root

Official Pytorch implementation of ICLR 22 paper Fast Differentiable Matrix Square Root

YueSong 42 Dec 30, 2022
Inference pipeline for our participation in the FeTA challenge 2021.

feta-inference Inference pipeline for our participation in the FeTA challenge 2021. Team name: TRABIT Installation Download the two folders in https:/

Lucas Fidon 2 Apr 13, 2022
PAWS 🐾 Predicting View-Assignments with Support Samples

This repo provides a PyTorch implementation of PAWS (predicting view assignments with support samples), as described in the paper Semi-Supervised Learning of Visual Features by Non-Parametrically Pre

Facebook Research 437 Dec 23, 2022
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022
Split your patch similarly to `git add -p` but supporting multiple buckets

split-patch.py This is git add -p on steroids for patches. Given a my.patch you can run ./split-patch.py my.patch You can choose in which bucket to p

102 Oct 06, 2022
Python implementation of Wu et al (2018)'s registration fusion

reg-fusion Projection of a central sulcus probability map using the RF-ANTs approach (right hemisphere shown). This is a Python implementation of Wu e

Dan Gale 26 Nov 12, 2021
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
Code for the paper "On the Power of Edge Independent Graph Models"

Edge Independent Graph Models Code for the paper: "On the Power of Edge Independent Graph Models" Sudhanshu Chanpuriya, Cameron Musco, Konstantinos So

Konstantinos Sotiropoulos 0 Oct 26, 2021
Semantic Segmentation of images using PixelLib with help of Pascalvoc dataset trained with Deeplabv3+ framework.

CARscan- Approach 1 - Segmentation of images by detecting contours. It failed because in images with elements along with cars were also getting detect

Padmanabha Banerjee 5 Jul 29, 2021
Implementation of C-RNN-GAN.

Implementation of C-RNN-GAN. Publication: Title: C-RNN-GAN: Continuous recurrent neural networks with adversarial training Information: http://mogren.

Olof Mogren 427 Dec 25, 2022
3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021)

3DDUNET This is the code for 3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021) Conference Paper Link Dataset We use SMOID dataset

1 Jan 07, 2022
🎃 Core identification module of AI powerful point reading system platform.

ppReader-Kernel Intro Core identification module of AI powerful point reading system platform. Usage 硬件: Windows10、GPU:nvdia GTX 1060 、普通RBG相机 软件: con

CrashKing 1 Jan 11, 2022