Tightness-aware Evaluation Protocol for Scene Text Detection

Overview

TIoU-metric

Release on 27/03/2019. This repository is built on the ICDAR 2015 evaluation code.

State-of-the-art Results on Total-Text and CTW1500 (TIoU)

We sincerely appreciate the authors of recent and previous state-of-the-art methods for providing their results for evaluating TIoU metric in curved text benchmarks. The results are listed below:

Total-Text

Methods on Total-Text TIoU-Recall (%) TIoU-Precision (%) TIoU-Hmean (%) Publication
LSN+CC [paper] 48.4 59.8 53.5 arXiv 1903
Polygon-FRCNN-3 [paper] 47.9 61.9 54.0 IJDAR 2019
CTD+TLOC [paper][code] 50.8 62.0 55.8 arXiv 1712
ATRR [paper] 53.7 63.5 58.2 CVPR 2019
PSENet [paper][code] 53.3 66.9 59.3 CVPR 2019
CRAFT [paper] 54.1 65.5 59.3 CVPR 2019
TextField [paper] 58.0 63.0 60.4 TIP 2019
Mask TextSpotter [paper] 54.5 68.0 60.5 ECCV 2018
SPCNet [paper][code] 61.8 69.4 65.4 AAAI 2019

CTW1500

Methods on CTW1500 TIoU-Recall (%) TIoU-Precision (%) TIoU-Hmean (%) Publication
CTD+TLOC [paper][code] 42.5 53.9 47.5 arXiv 1712
ATRR [paper] 54.9 61.6 58.0 CVPR 2019
LSN+CC [paper] 55.9 64.8 60.0 arXiv 1903
PSENet [paper][code] 54.9 67.6 60.6 CVPR 2019
CRAFT [paper] 56.4 66.3 61.0 CVPR 2019
MSR [paper] 56.3 67.3 61.3 arXiv 1901
TextField [paper] 57.2 66.2 61.4 TIP 2019
TextMountain [paper] 60.7 68.1 64.2 arXiv 1811
PAN Mask R-CNN [paper] 61.0 70.0 65.2 WACV 2019

Description

Evaluation protocols plays key role in the developmental progress of text detection methods. There are strict requirements to ensure that the evaluation methods are fair, objective and reasonable. However, existing metrics exhibit some obvious drawbacks:

*Unreasonable cases obtained using recent evaluation metrics. (a), (b), (c), and (d) all have the same IoU of 0.66 against the GT. Red: GT. Blue: detection.
  • As shown in (a), previous metrics consider that the GT has been entirely recalled.

  • As shown in (b), (c), and (d), even if containing background noise, previous metrics consider such detection to have 100% precision.

  • Previous metrics consider detections (a), (b), (c), and (d) to be equivalent perfect detections.

  • Previous metrics severely rely on an IoU threshold. High IoU threshold may discard some satisfactory bounding boxes, while low IoU threshold may include several inexact bounding boxes.

To address many existing issues of previous evaluation metrics, we propose an improved evaluation protocol called Tightnessaware Intersect-over-Union (TIoU) metric that could quantify:

  • Completeness of ground truth

  • Compactness of detection

  • Tightness of matching degree

We hope this work can raise the attentions of the text detection evaluation metrics and serve as a modest spur to more valuable contributions. More details can be found on our paper.

Clone the TIoU repository

Clone the TIoU-metric repository

git clone https://github.com/Yuliang-Liu/TIoU-metric.git --recursive

Getting Started

Install required module

pip install Polygon2

Then run

python script.py -g=gt.zip -s=pixellinkch4.zip

After that you can see the evaluation resutls.

You can simply replace pixellinkch4.zip with your own dection results, and make sure your dection format follows the same as ICDAR 2015.

Joint Word&Text-Line Evaluation

To test your detection with our joint Word&Text-Line solution, simply

cd Word_Text-Line

Then run the code

python script.py -g=gt.zip -gl=gt_textline.zip -s=pixellinkch4.zip

Support Curved Text Evaluation

Curved text requires polygonal input with mutable number of points. To evaluate your results on recent curved text benchmarks Total-text or SCUT-CTW1500, you can refer to curved-tiou/readme.md.

Example Results

Qualitative results:

*Qualitative visualization of TIoU metric. Blue: Detection. Bold red: Target GT region. Light red: Other GT regions. Rec.: Recognition results by CRNN [24]. NED: Normalized edit distance. Previous metrics evaluate all detection results and target GTs as 100% precision and recall, respectively, while in TIoU metric, all matching pairs are penalized by different degrees. Ct is defined in Eq. 10. Ot is defined in Eq. 13. Please refer to our paper for all the references.

ICDAR 2013 results:

*Comparison of evaluation methods on ICDAR 2013 for general detection frameworks and previous state-of-the-art methods. det: DetEval. i: IoU. e1: End-to-end recognition results by using CRNN [24]. e2: End-to-end recognition results by using RARE [25]. t: TIoU.

Line chart:

*(a) X-axis represents the detection methods listed in the Table above, and Y-axis represents the values of the F-measures.

ICDAR 2015 results:

*Comparison of metrics on the ICDAR 2015 challenge 4. Word&Text-Line Annotations use our new solution to address OM and MO issues. i: IoU. s: SIoU. t: TIoU.

Citation

If you find our metric useful for your reserach, please cite

@article{liu2019tightness,
  title={Tightness-aware Evaluation Protocol for Scene Text Detection},
  author={Liu, Yuliang and Jin, Lianwen and Xie, Zecheng and Luo, Canjie and Zhang, Shuaitao and Xie, Lele},
  journal={CVPR},
  year={2019}
}

References

If you are insterested in developing better scene text detection metrics, some references recommended here might be useful.

[1] Wolf, Christian, and Jean-Michel Jolion. "Object count/area graphs for the evaluation of object detection and segmentation algorithms." International Journal of Document Analysis and Recognition (IJDAR) 8.4 (2006): 280-296.

[2] Calarasanu, Stefania, Jonathan Fabrizio, and Severine Dubuisson. "What is a good evaluation protocol for text localization systems? Concerns, arguments, comparisons and solutions." Image and Vision Computing 46 (2016): 1-17.

[3] Dangla, Aliona, et al. "A first step toward a fair comparison of evaluation protocols for text detection algorithms." 2018 13th IAPR International Workshop on Document Analysis Systems (DAS). IEEE, 2018.

[4] Shi, Baoguang, et al. "ICDAR2017 competition on reading chinese text in the wild (RCTW-17)." 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR). Vol. 1. IEEE, 2017.

Feedback

Suggestions and opinions of this metric (both positive and negative) are greatly welcome. Please contact the authors by sending email to [email protected] or [email protected].

Owner
Yuliang Liu
MMLab; South China University of Technology; University of Adelaide
Yuliang Liu
ilpyt: imitation learning library with modular, baseline implementations in Pytorch

ilpyt The imitation learning toolbox (ilpyt) contains modular implementations of common deep imitation learning algorithms in PyTorch, with unified in

The MITRE Corporation 11 Nov 17, 2022
Code-free deep segmentation for computational pathology

NoCodeSeg: Deep segmentation made easy! This is the official repository for the manuscript "Code-free development and deployment of deep segmentation

André Pedersen 26 Nov 23, 2022
Official Implementation (PyTorch) of "Point Cloud Augmentation with Weighted Local Transformations", ICCV 2021

PointWOLF: Point Cloud Augmentation with Weighted Local Transformations This repository is the implementation of PointWOLF(To appear). Sihyeon Kim1*,

MLV Lab (Machine Learning and Vision Lab at Korea University) 16 Nov 03, 2022
The official PyTorch implementation for NCSNv2 (NeurIPS 2020)

Improved Techniques for Training Score-Based Generative Models This repo contains the official implementation for the paper Improved Techniques for Tr

174 Dec 26, 2022
A style-based Quantum Generative Adversarial Network

Style-qGAN A style based Quantum Generative Adversarial Network (style-qGAN) model for Monte Carlo event generation. Tutorial We have prepared a noteb

9 Nov 24, 2022
ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

Yanda Meng 14 May 13, 2022
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.

Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa

Rabeeh Karimi Mahabadi 98 Dec 28, 2022
Simple torch.nn.module implementation of Alias-Free-GAN style filter and resample

Alias-Free-Torch Simple torch module implementation of Alias-Free GAN. This repository including Alias-Free GAN style lowpass sinc filter @filter.py A

이준혁(Junhyeok Lee) 64 Dec 22, 2022
Implementation of Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021)

PSWE: Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021) PSWE is a permutation-invariant feature aggregation/pooling method based on sliced-Wasser

Navid Naderializadeh 3 May 06, 2022
Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback

Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback This is our Pytorch implementation for the paper: Yinwei Wei,

17 Jun 10, 2022
Expressive Power of Invariant and Equivaraint Graph Neural Networks (ICLR 2021)

Expressive Power of Invariant and Equivaraint Graph Neural Networks In this repository, we show how to use powerful GNN (2-FGNN) to solve a graph alig

Marc Lelarge 36 Dec 12, 2022
Code for Robust Contrastive Learning against Noisy Views

Robust Contrastive Learning against Noisy Views This repository provides a PyTorch implementation of the Robust InfoNCE loss proposed in paper Robust

Ching-Yao Chuang 53 Jan 08, 2023
[CVPR2021 Oral] End-to-End Video Instance Segmentation with Transformers

VisTR: End-to-End Video Instance Segmentation with Transformers This is the official implementation of the VisTR paper: Installation We provide instru

Yuqing Wang 687 Jan 07, 2023
Multi-Glimpse Network With Python

Multi-Glimpse Network Our code requires Python ≥ 3.8 Installation For example, venv + pip: $ python3 -m venv env $ source env/bin/activate (env) $ pyt

9 May 10, 2022
an implementation of softmax splatting for differentiable forward warping using PyTorch

softmax-splatting This is a reference implementation of the softmax splatting operator, which has been proposed in Softmax Splatting for Video Frame I

Simon Niklaus 338 Dec 28, 2022
Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".

nvdiffrec Joint optimization of topology, materials and lighting from multi-view image observations as described in the paper Extracting Triangular 3D

NVIDIA Research Projects 1.4k Jan 01, 2023
MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images This repository contains the implementation of our paper MetaAvatar: Learni

sfwang 96 Dec 13, 2022
Code for Universal Semi-Supervised Semantic Segmentation models paper accepted in ICCV 2019

USSS_ICCV19 Code for Universal Semi Supervised Semantic Segmentation accepted to ICCV 2019. Full Paper available at https://arxiv.org/abs/1811.10323.

Tarun K 68 Nov 24, 2022
A vision library for performing sliced inference on large images/small objects

SAHI: Slicing Aided Hyper Inference A vision library for performing sliced inference on large images/small objects Overview Object detection and insta

Open Business Software Solutions 2.3k Jan 04, 2023
Python SDK for building, training, and deploying ML models

Overview of Kubeflow Fairing Kubeflow Fairing is a Python package that streamlines the process of building, training, and deploying machine learning (

Kubeflow 325 Dec 13, 2022