YOLOX Win10 Project

Overview

Introduction

这是一个用于Windows训练YOLOX的项目,相比于官方项目,做了一些适配和修改:

1、解决了Windows下import yolox失败,No such file or directory: 'xxx.xml'等路径问题

2、CUDA out of memory等显存不够问题

3、增加eval.txt,可以输出IoU=0.5-0.95的AP值,以及Map50和Map50:95

Benchmark

Model size mAPval
0.5:0.95
mAPtest
0.5:0.95
Speed V100
(ms)
Params
(M)
FLOPs
(G)
weights
YOLOX-s 640 40.5 40.5 9.8 9.0 26.8 github
YOLOX-m 640 46.9 47.2 12.3 25.3 73.8 github
YOLOX-l 640 49.7 50.1 14.5 54.2 155.6 github
YOLOX-x 640 51.1 51.5 17.3 99.1 281.9 github
YOLOX-Darknet53 640 47.7 48.0 11.1 63.7 185.3 github

Training on custom data

1、准备数据集

以VOC数据集为例,数据目录如下图所示,datasets/VOCdevkit/VOC2021/(不建议修改年份,如需要修改,则对应修改yolox_voc_s.py中的年份),该文件夹下有三个文件夹,分别为Annotations、JPEGImages、ImageSets,特别注意ImageSets文件夹下须新建Main文件夹,运行dataset_cls.py(注意切换到datasets路径下,可以修改训练集和测试集比例)会自动生成训练文件trainval.txttest.txt

2、修改配置文件

修改exps/example/yolox_voc/yolox_voc_s.py文件 self.num_classes和其他配置变量(自选)

class Exp(MyExp):
    def __init__(self):
        super(Exp, self).__init__()
        self.num_classes = 42         #修改成自己的类别
        self.depth = 0.33
        self.width = 0.50
        self.warmup_epochs = 1

此Exp类体继承MyExp类体,且可以对MyExp的变量重写(因此有更高的优先级),对按住ctrl点击MyExp跳转

class Exp(BaseExp):
    def __init__(self):
        super().__init__()

        # ---------------- model config ---------------- #
        self.num_classes = 80  #因为在yolox_voc_s.py中已经重新赋值,此处不用修改
        self.depth = 1.00
        self.width = 1.00
        self.act = 'silu'

        # ---------------- dataloader config ---------------- #
        # set worker to 4 for shorter dataloader init time
        self.data_num_workers = 1
        self.input_size = (640, 640)  # (height, width)
        # Actual multiscale ranges: [640-5*32, 640+5*32].
        # To disable multiscale training, set the
        # self.multiscale_range to 0.
        self.multiscale_range = 5 #五种输入大小随机调整
        # You can uncomment this line to specify a multiscale range
        # self.random_size = (14, 26)
        self.data_dir = None
        self.train_ann = "instances_train2017.json"
        self.val_ann = "instances_val2017.json"

        # --------------- transform config ----------------- #
        self.mosaic_prob = 1.0   #数据增强概率,可以根据需要调整
        self.mixup_prob = 1.0
        self.hsv_prob = 1.0
        self.flip_prob = 0.5
        self.degrees = 10.0
        self.translate = 0.1
        self.mosaic_scale = (0.1, 2)
        self.mixup_scale = (0.5, 1.5)
        self.shear = 2.0
        self.enable_mixup = True

        # --------------  training config --------------------- #
        self.warmup_epochs = 5
        self.max_epoch = 100  #设置训练轮数
        self.warmup_lr = 0
        self.basic_lr_per_img = 0.01 / 64.0
        self.scheduler = "yoloxwarmcos"
        self.no_aug_epochs = 15 #不适用数据增强轮数
        self.min_lr_ratio = 0.05
        self.ema = True

        self.weight_decay = 5e-4
        self.momentum = 0.9
        self.print_interval = 10 #每隔十步打印输出一次训练信息
        self.eval_interval = 1 #每隔1轮保存一次
        self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]

        # -----------------  testing config ------------------ #
        self.test_size = (640, 640)
        self.test_conf = 0.01
        self.nmsthre = 0.65

可以对上述类体变量进行调整,其中关键变量有input_size、max_epoch、eval_interval

3、开始训练

输入以下命令开始训练,-c 表示加载预训练权重

python tools/train.py  -c /path/to/yolox_s.pth

你也可以对其他参数进行调整,例如:

python tools/train.py  -d 1 -b 8 --fp16 -c /path/to/yolox_s.pth

-d 表示用几块显卡,-b 表示设置batch_size,--fp16 表示半精度训练,-c 表示加载预训练权重,如果在显存不足的情况下,谨慎输入 -o 参数,会占用较多显存

如果训练一半终止后,想继续断点训练,可以输入

python tools/train.py --resume

Evaluation

输入以下代码默认对精度最高模型评估,评估后,可以在YOLOX_outputs/yolox_voc_s/eval.txt中看到IoU=0.5-0.95的AP值,文件最后可以看到Map50Map50:95

python tools/eval.py

如需对设定其他参数,可以输入以下代码,参数意义同训练

python tools/eval.py -n  yolox-s -c yolox_s.pth -b 8 -d 1 --conf 0.001 
                         yolox-m
                         yolox-l
                         yolox-x

Reference

https://github.com/Megvii-BaseDetection/YOLOX

Tensorflow implementation of Character-Aware Neural Language Models.

Character-Aware Neural Language Models Tensorflow implementation of Character-Aware Neural Language Models. The original code of author can be found h

Taehoon Kim 751 Dec 26, 2022
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
Codebase for the paper titled "Continual learning with local module selection"

This repository contains the codebase for the paper Continual Learning via Local Module Composition. Setting up the environemnt Create a new conda env

Oleksiy Ostapenko 20 Dec 10, 2022
SOFT: Softmax-free Transformer with Linear Complexity, NeurIPS 2021 Spotlight

SOFT: Softmax-free Transformer with Linear Complexity SOFT: Softmax-free Transformer with Linear Complexity, Jiachen Lu, Jinghan Yao, Junge Zhang, Xia

Fudan Zhang Vision Group 272 Dec 25, 2022
Tools for manipulating UVs in the Blender viewport.

UV Tool Suite for Blender A set of tools to make editing UVs easier in Blender. These tools can be accessed wither through the Kitfox - UV panel on th

35 Oct 29, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

Zixuan Ke 176 Jan 05, 2023
Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.

deep_autoviml Build keras pipelines and models in a single line of code! Table of Contents Motivation How it works Technology Install Usage API Image

AutoViz and Auto_ViML 102 Dec 17, 2022
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection

Facebook Research 366 Dec 28, 2022
Implementation of Pix2Seq in PyTorch

pix2seq-pytorch Implementation of Pix2Seq paper Different from the paper image input size 1280 bin size 1280 LambdaLR scheduler used instead of Linear

Tony Shin 9 Dec 15, 2022
GAN Image Generator and Characterwise Image Recognizer with python

MODEL SUMMARY 모델의 구조는 크게 6단계로 나뉩니다. STEP 0: Input Image Predict 할 이미지를 모델에 입력합니다. STEP 1: Make Black and White Image STEP 1 은 입력받은 이미지의 글자를 흑색으로, 배경을

Juwan HAN 1 Feb 09, 2022
Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order of magnitude using coresets and data selection.

COResets and Data Subset selection Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order

decile-team 244 Jan 09, 2023
Official PyTorch implementation of StyleGAN3

Modified StyleGAN3 Repo Changes Made tied to python 3.7 syntax .jpgs instead of .pngs for training sample seeds to recreate the 1024 training grid wit

Derrick Schultz (he/him) 83 Dec 15, 2022
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Text-AutoAugment (TAA) This repository contains the code for our paper Text AutoAugment: Learning Compositional Augmentation Policy for Text Classific

LancoPKU 105 Jan 03, 2023
Random Walk Graph Neural Networks

Random Walk Graph Neural Networks This repository is the official implementation of Random Walk Graph Neural Networks. Requirements Code is written in

Giannis Nikolentzos 38 Jan 02, 2023
Deep learning operations reinvented (for pytorch, tensorflow, jax and others)

This video in better quality. einops Flexible and powerful tensor operations for readable and reliable code. Supports numpy, pytorch, tensorflow, and

Alex Rogozhnikov 6.2k Jan 01, 2023
A cross-lingual COVID-19 fake news dataset

CrossFake An English-Chinese COVID-19 fake&real news dataset from the ICDMW 2021 paper below: Cross-lingual COVID-19 Fake News Detection. Jiangshu Du,

Yingtong Dou 11 Dec 01, 2022
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

ASAPP Research 49 Oct 09, 2022
Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable.

Diffrax Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable. Diffrax is a JAX-based library providing numerical differe

Patrick Kidger 717 Jan 09, 2023
Official code for "EagerMOT: 3D Multi-Object Tracking via Sensor Fusion" [ICRA 2021]

EagerMOT: 3D Multi-Object Tracking via Sensor Fusion Read our ICRA 2021 paper here. Check out the 3 minute video for the quick intro or the full prese

Aleksandr Kim 276 Dec 30, 2022