YOLOX Win10 Project

Overview

Introduction

这是一个用于Windows训练YOLOX的项目,相比于官方项目,做了一些适配和修改:

1、解决了Windows下import yolox失败,No such file or directory: 'xxx.xml'等路径问题

2、CUDA out of memory等显存不够问题

3、增加eval.txt,可以输出IoU=0.5-0.95的AP值,以及Map50和Map50:95

Benchmark

Model size mAPval
0.5:0.95
mAPtest
0.5:0.95
Speed V100
(ms)
Params
(M)
FLOPs
(G)
weights
YOLOX-s 640 40.5 40.5 9.8 9.0 26.8 github
YOLOX-m 640 46.9 47.2 12.3 25.3 73.8 github
YOLOX-l 640 49.7 50.1 14.5 54.2 155.6 github
YOLOX-x 640 51.1 51.5 17.3 99.1 281.9 github
YOLOX-Darknet53 640 47.7 48.0 11.1 63.7 185.3 github

Training on custom data

1、准备数据集

以VOC数据集为例,数据目录如下图所示,datasets/VOCdevkit/VOC2021/(不建议修改年份,如需要修改,则对应修改yolox_voc_s.py中的年份),该文件夹下有三个文件夹,分别为Annotations、JPEGImages、ImageSets,特别注意ImageSets文件夹下须新建Main文件夹,运行dataset_cls.py(注意切换到datasets路径下,可以修改训练集和测试集比例)会自动生成训练文件trainval.txttest.txt

2、修改配置文件

修改exps/example/yolox_voc/yolox_voc_s.py文件 self.num_classes和其他配置变量(自选)

class Exp(MyExp):
    def __init__(self):
        super(Exp, self).__init__()
        self.num_classes = 42         #修改成自己的类别
        self.depth = 0.33
        self.width = 0.50
        self.warmup_epochs = 1

此Exp类体继承MyExp类体,且可以对MyExp的变量重写(因此有更高的优先级),对按住ctrl点击MyExp跳转

class Exp(BaseExp):
    def __init__(self):
        super().__init__()

        # ---------------- model config ---------------- #
        self.num_classes = 80  #因为在yolox_voc_s.py中已经重新赋值,此处不用修改
        self.depth = 1.00
        self.width = 1.00
        self.act = 'silu'

        # ---------------- dataloader config ---------------- #
        # set worker to 4 for shorter dataloader init time
        self.data_num_workers = 1
        self.input_size = (640, 640)  # (height, width)
        # Actual multiscale ranges: [640-5*32, 640+5*32].
        # To disable multiscale training, set the
        # self.multiscale_range to 0.
        self.multiscale_range = 5 #五种输入大小随机调整
        # You can uncomment this line to specify a multiscale range
        # self.random_size = (14, 26)
        self.data_dir = None
        self.train_ann = "instances_train2017.json"
        self.val_ann = "instances_val2017.json"

        # --------------- transform config ----------------- #
        self.mosaic_prob = 1.0   #数据增强概率,可以根据需要调整
        self.mixup_prob = 1.0
        self.hsv_prob = 1.0
        self.flip_prob = 0.5
        self.degrees = 10.0
        self.translate = 0.1
        self.mosaic_scale = (0.1, 2)
        self.mixup_scale = (0.5, 1.5)
        self.shear = 2.0
        self.enable_mixup = True

        # --------------  training config --------------------- #
        self.warmup_epochs = 5
        self.max_epoch = 100  #设置训练轮数
        self.warmup_lr = 0
        self.basic_lr_per_img = 0.01 / 64.0
        self.scheduler = "yoloxwarmcos"
        self.no_aug_epochs = 15 #不适用数据增强轮数
        self.min_lr_ratio = 0.05
        self.ema = True

        self.weight_decay = 5e-4
        self.momentum = 0.9
        self.print_interval = 10 #每隔十步打印输出一次训练信息
        self.eval_interval = 1 #每隔1轮保存一次
        self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]

        # -----------------  testing config ------------------ #
        self.test_size = (640, 640)
        self.test_conf = 0.01
        self.nmsthre = 0.65

可以对上述类体变量进行调整,其中关键变量有input_size、max_epoch、eval_interval

3、开始训练

输入以下命令开始训练,-c 表示加载预训练权重

python tools/train.py  -c /path/to/yolox_s.pth

你也可以对其他参数进行调整,例如:

python tools/train.py  -d 1 -b 8 --fp16 -c /path/to/yolox_s.pth

-d 表示用几块显卡,-b 表示设置batch_size,--fp16 表示半精度训练,-c 表示加载预训练权重,如果在显存不足的情况下,谨慎输入 -o 参数,会占用较多显存

如果训练一半终止后,想继续断点训练,可以输入

python tools/train.py --resume

Evaluation

输入以下代码默认对精度最高模型评估,评估后,可以在YOLOX_outputs/yolox_voc_s/eval.txt中看到IoU=0.5-0.95的AP值,文件最后可以看到Map50Map50:95

python tools/eval.py

如需对设定其他参数,可以输入以下代码,参数意义同训练

python tools/eval.py -n  yolox-s -c yolox_s.pth -b 8 -d 1 --conf 0.001 
                         yolox-m
                         yolox-l
                         yolox-x

Reference

https://github.com/Megvii-BaseDetection/YOLOX

[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
[CoRL 2021] A robotics benchmark for cross-embodiment imitation.

x-magical x-magical is a benchmark extension of MAGICAL specifically geared towards cross-embodiment imitation. The tasks still provide the Demo/Test

Kevin Zakka 36 Nov 26, 2022
Codes for “A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing Change Detection”

DSAMNet The pytorch implementation for "A Deeply-supervised Attention Metric-based Network and an Open Aerial Image Dataset for Remote Sensing Change

Mengxi Liu 41 Dec 14, 2022
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 07, 2023
RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation

RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation Anonymous submission Abstract 3D obj

30 Sep 16, 2022
A smart Chat bot that can help to know about corona virus and Make prediction of corona using X-ray.

TRINIT_Hum_kuchh_nahi_karenge_ML01 Document Link https://github.com/Jatin-Goyal-552/TRINIT_Hum_kuchh_nahi_karenge_ML01/blob/main/hum_kuchh_nahi_kareng

JatinGoyal 1 Feb 03, 2022
code for our ECCV 2020 paper "A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation"

Code for our ECCV (2020) paper A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation. Prerequisites: python == 3.6.8 pytorch ==1.1.0

32 Nov 27, 2022
A library that allows for inference on probabilistic models

Bean Machine Overview Bean Machine is a probabilistic programming language for inference over statistical models written in the Python language using

Meta Research 234 Dec 29, 2022
Covid19-Forecasting - An interactive website that tracks, models and predicts COVID-19 Cases

Covid-Tracker This is an interactive website that tracks, models and predicts CO

Adam Lahmadi 1 Feb 01, 2022
Imaginaire - NVIDIA's Deep Imagination Team's PyTorch Library

Imaginaire Docs | License | Installation | Model Zoo Imaginaire is a pytorch library that contains optimized implementation of several image and video

NVIDIA Research Projects 3.6k Dec 29, 2022
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

607 Dec 31, 2022
Avalanche RL: an End-to-End Library for Continual Reinforcement Learning

Avalanche RL: an End-to-End Library for Continual Reinforcement Learning Avalanche Website | Getting Started | Examples | Tutorial | API Doc | Paper |

ContinualAI 43 Dec 24, 2022
Self-supervised learning optimally robust representations for domain generalization.

OptDom: Learning Optimal Representations for Domain Generalization This repository contains the official implementation for Optimal Representations fo

Yangjun Ruan 18 Aug 25, 2022
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
The end-to-end platform for building voice products at scale

Picovoice Made in Vancouver, Canada by Picovoice Picovoice is the end-to-end platform for building voice products on your terms. Unlike Alexa and Goog

Picovoice 318 Jan 07, 2023
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
Model Quantization Benchmark

Introduction MQBench is an open-source model quantization toolkit based on PyTorch fx. The envision of MQBench is to provide: SOTA Algorithms. With MQ

500 Jan 06, 2023
Code and experiments for "Deep Neural Networks for Rank Consistent Ordinal Regression based on Conditional Probabilities"

corn-ordinal-neuralnet This repository contains the orginal model code and experiment logs for the paper "Deep Neural Networks for Rank Consistent Ord

Raschka Research Group 14 Dec 27, 2022
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022