PyContinual (An Easy and Extendible Framework for Continual Learning)

Overview

PyContinual (An Easy and Extendible Framework for Continual Learning)

Easy to Use

You can sumply change the baseline, backbone and task, and then ready to go. Here is an example:

	python run.py \  
	--bert_model 'bert-base-uncased' \  
	--backbone bert_adapter \ #or other backbones (bert, w2v...)  
	--baseline ctr \  #or other avilable baselines (classic, ewc...)
	--task asc \  #or other avilable task/dataset (dsc, newsgroup...)
	--eval_batch_size 128 \  
	--train_batch_size 32 \  
	--scenario til_classification \  #or other avilable scenario (dil_classification...)
	--idrandom 0  \ #which random sequence to use
	--use_predefine_args #use pre-defined arguments

Easy to Extend

You only need to write your own ./dataloader, ./networks and ./approaches. You are ready to go!

Introduction

Recently, continual learning approaches have drawn more and more attention. This repo contains pytorch implementation of a set of (improved) SoTA methods using the same training and evaluation pipeline.

This repository contains the code for the following papers:

Features

  • Datasets: It currently supports Language Datasets (Document/Sentence/Aspect Sentiment Classification, Natural Language Inference, Topic Classification) and Image Datasets (CelebA, CIFAR10, CIFAR100, FashionMNIST, F-EMNIST, MNIST, VLCS)
  • Scenarios: It currently supports Task Incremental Learning and Domain Incremental Learning
  • Training Modes: It currently supports single-GPU. You can also change it to multi-node distributed training and the mixed precision training.

Architecture

./res: all results saved in this folder.
./dat: processed data
./data: raw data ./dataloader: contained dataloader for different data ./approaches: code for training
./networks: code for network architecture
./data_seq: some reference sequences (e.g. asc_random) ./tools: code for preparing the data

Setup

  • If you want to run the existing systems, please see run_exist.md
  • If you want to expand the framework with your own model, please see run_own.md
  • If you want to see the full list of baselines and variants, please see baselines.md

Reference

If using this code, parts of it, or developments from it, please consider cite the references bellow.

@inproceedings{ke2021achieve,
  title={Achieving Forgetting Prevention and Knowledge Transfer in Continual Learning},
  author={Ke, Zixuan and Liu, Bing and Ma, Nianzu and Xu, Hu, and Lei Shu},
  booktitle={NeurIPS},
  year={2021}
}

@inproceedings{ke2021contrast,
  title={CLASSIC: Continual and Contrastive Learning of Aspect Sentiment Classification Tasks},
  author={Ke, Zixuan and Liu, Bing and Xu, Hu, and Lei Shu},
  booktitle={EMNLP},
  year={2021}
}

@inproceedings{ke2021adapting,
  title={Adapting BERT for Continual Learning of a Sequence of Aspect Sentiment Classification Tasks},
  author={Ke, Zixuan and Xu, Hu and Liu, Bing},
  booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies},
  pages={4746--4755},
  year={2021}
}

@inproceedings{ke2020continualmixed,
author= {Ke, Zixuan and Liu, Bing and Huang, Xingchang},
title= {Continual Learning of a Mixed Sequence of Similar and Dissimilar Tasks},
booktitle = {Advances in Neural Information Processing Systems},
volume={33},
year = {2020}}

@inproceedings{ke2020continual,
author= {Zixuan Ke and Bing Liu and Hao Wang and Lei Shu},
title= {Continual Learning with Knowledge Transfer for Sentiment Classification},
booktitle = {ECML-PKDD},
year = {2020}}

Contact

Please drop an email to Zixuan Ke, Xingchang Huang or Nianzu Ma if you have any questions regarding to the code. We thank Bing Liu, Hu Xu and Lei Shu for their valuable comments and opinioins.

Owner
Zixuan Ke
Zixuan Ke
Self-Regulated Learning for Egocentric Video Activity Anticipation

Self-Regulated Learning for Egocentric Video Activity Anticipation Introduction This is a Pytorch implementation of the model described in our paper:

qzhb 13 Sep 23, 2022
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 08, 2023
3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021)

3DDUNET This is the code for 3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021) Conference Paper Link Dataset We use SMOID dataset

1 Jan 07, 2022
Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX

coax is built on top of JAX, but it doesn't have an explicit dependence on the jax python package. The reason is that your version of jaxlib will depend on your CUDA version.

128 Dec 27, 2022
MILK: Machine Learning Toolkit

MILK: MACHINE LEARNING TOOLKIT Machine Learning in Python Milk is a machine learning toolkit in Python. Its focus is on supervised classification with

Luis Pedro Coelho 610 Dec 14, 2022
Joint Learning of 3D Shape Retrieval and Deformation, CVPR 2021

Joint Learning of 3D Shape Retrieval and Deformation Joint Learning of 3D Shape Retrieval and Deformation Mikaela Angelina Uy, Vladimir G. Kim, Minhyu

Mikaela Uy 38 Oct 18, 2022
KDD CUP 2020 Automatic Graph Representation Learning: 1st Place Solution

KDD CUP 2020: AutoGraph Team: aister Members: Jianqiang Huang, Xingyuan Tang, Mingjian Chen, Jin Xu, Bohang Zheng, Yi Qi, Ke Hu, Jun Lei Team Introduc

96 May 30, 2022
Baseline and template code for node21 detection track

Nodule Detection Algorithm This codebase implements a baseline model, Faster R-CNN, for the nodule detection track in NODE21. It contains all necessar

node21challenge 11 Jan 15, 2022
Generate indoor scenes with Transformers

SceneFormer: Indoor Scene Generation with Transformers Initial code release for the Sceneformer paper, contains models, train and test scripts for the

Chandan Yeshwanth 110 Dec 06, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Vera 75 Dec 13, 2022
PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Box Convolution Layer for ConvNets Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST What This Is This is a PyTorch implemen

Egor Burkov 515 Dec 18, 2022
DecoupledNet is semantic segmentation system which using heterogeneous annotations

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTE

Hyeonwoo Noh 74 Sep 22, 2021
A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
Coded illumination for improved lensless imaging

CodedCam Coded Illumination for Improved Lensless Imaging Paper | Supplementary results | Data and Code are available. Coded illumination for improved

Computational Sensing and Information Processing Lab 1 Nov 29, 2021
Platform-agnostic AI Framework đŸ”„

🇬🇧 TensorLayerX is a multi-backend AI framework, which can run on almost all operation systems and AI hardwares, and support hybrid-framework progra

TensorLayer Community 171 Jan 06, 2023
L-Verse: Bidirectional Generation Between Image and Text

Far beyond learning long-range interactions of natural language, transformers are becoming the de-facto standard for many vision tasks with their power and scalabilty

Kim, Taehoon 102 Dec 21, 2022
Intrinsic Image Harmonization

Intrinsic Image Harmonization [Paper] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng Here we provide PyTorch implementation and the

VISION @ OUC 44 Dec 21, 2022
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022