Progressive Domain Adaptation for Object Detection

Overview

Progressive Domain Adaptation for Object Detection

Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-faster-rcnn and PyTorch-CycleGAN.

Paper

Progressive Domain Adaptation for Object Detection Han-Kai Hsu, Chun-Han Yao, Yi-Hsuan Tsai, Wei-Chih Hung, Hung-Yu Tseng, Maneesh Singh and Ming-Hsuan Yang IEEE Winter Conference on Applications of Computer Vision (WACV), 2020.

Please cite our paper if you find it useful for your research.

@inproceedings{hsu2020progressivedet,
  author = {Han-Kai Hsu and Chun-Han Yao and Yi-Hsuan Tsai and Wei-Chih Hung and Hung-Yu Tseng and Maneesh Singh and Ming-Hsuan Yang},
  booktitle = {IEEE Winter Conference on Applications of Computer Vision (WACV)},
  title = {Progressive Domain Adaptation for Object Detection},
  year = {2020}
}

Dependencies

This code is tested with Pytorch 0.4.1 and CUDA 9.0

# Pytorch via pip: Download and install Pytorch 0.4.1 wheel for CUDA 9.0
#                  from https://download.pytorch.org/whl/cu90/torch_stable.html
# Pytorch via conda: 
conda install pytorch=0.4.1 cuda90 -c pytorch
# Other dependencies:
pip install -r requirements.txt
sh ./lib/make.sh

Data Preparation

KITTI

  • Download the data from here.
  • Extract the files under data/KITTI/

Cityscapes

  • Download the data from here.
  • Extract the files under data/CityScapes/

Foggy Cityscapes

  • Follow the instructions here to request for the dataset download.
  • Locate the data under data/CityScapes/leftImg8bit/ as foggytrain and foggyval.

BDD100k

  • Download the data from here.
  • Extract the files under data/bdd100k/

Generate synthetic data with CycleGAN

Generate the synthetic data with the PyTorch-CycleGAN implementation.

git clone https://github.com/aitorzip/PyTorch-CycleGAN

Dataset loader code

Import the dataset loader code in ./cycleGAN_dataset_loader/ to train/test the CycleGAN on corresponding image translation task.

Generate from pre-trained weight:

Follow the testing instructions on PyTorch-CycleGAN and download the weight below to generate synthetic images. (Remember to change to the corresponding output image size)

  • KITTI with Cityscapes style (KITTI->Cityscapes): size=(376,1244) Locate the generated data under data/KITTI/training/synthCity_image_2/ with same naming and folder structure as original KITTI data.
  • Cityscapes with FoggyCityscapes style (Cityscapes->FoggyCityscapes): size=(1024,2048) Locate the generated data under data/CityScapes/leftImg8bit/synthFoggytrain with same naming and folder structure as original Cityscapes data.
  • Cityscapes with BDD style (Cityscpaes->BDD100k): size=(1024,1280) Locate the generated data under data/CityScapes/leftImg8bit/synthBDDdaytrain and data/CityScapes/leftImg8bit/synthBDDdayval with same naming and folder structure as original Cityscapes data.

Train your own CycleGAN:

Please follow the training instructions on PyTorch-CycleGAN.

Test the adaptation model

Download the following adapted weights to ./trained_weights/adapt_weight/

./experiments/scripts/test_adapt_faster_rcnn_stage1.sh [GPU_ID] [Adapt_mode] vgg16
# Specify the GPU_ID you want to use
# Adapt_mode selection:
#   'K2C': KITTI->Cityscapes
#   'C2F': Cityscapes->Foggy Cityscapes
#   'C2BDD': Cityscapes->BDD100k_day
# Example:
./experiments/scripts/test_adapt_faster_rcnn_stage2.sh 0 K2C vgg16

Train your own model

Stage one

./experiments/scripts/train_adapt_faster_rcnn_stage1.sh [GPU_ID] [Adapt_mode] vgg16
# Specify the GPU_ID you want to use
# Adapt_mode selection:
#   'K2C': KITTI->Cityscapes
#   'C2F': Cityscapes->Foggy Cityscapes
#   'C2BDD': Cityscapes->BDD100k_day
# Example:
./experiments/scripts/train_adapt_faster_rcnn_stage1.sh 0 K2C vgg16

Download the following pretrained detector weights to ./trained_weights/pretrained_detector/

Stage two

./experiments/scripts/train_adapt_faster_rcnn_stage2.sh 0 K2C vgg16

Discriminator score files:

  • netD_synthC_score.json
  • netD_CsynthFoggyC_score.json
  • netD_CsynthBDDday_score.json

Extract the pretrained CycleGAN discriminator scores to ./trained_weights/
or
Save a dictionary of CycleGAN discriminator scores with image name as key and score as value
Ex: {'jena_000074_000019_leftImg8bit.png': 0.64}

Detection results

Adaptation results

Acknowledgement

Thanks to the awesome implementations from pytorch-faster-rcnn and PyTorch-CycleGAN.

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation" Setting up a python environment Follow the instruction in ht

Michael Tarasiou 11 Oct 09, 2022
CT Based COVID 19 Diagnose by Image Processing and Deep Learning

This project proposed the deep learning and image processing method to undertake the diagnosis on 2D CT image and 3D CT volume.

1 Feb 08, 2022
Source Code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chinese Question Matching

Description The source code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chin

Zhengxiang Wang 3 Jun 28, 2022
Tensors and neural networks in Haskell

Hasktorch Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the co

hasktorch 920 Jan 04, 2023
Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Ian Pointer 368 Dec 17, 2022
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
[ICML 2022] The official implementation of Graph Stochastic Attention (GSAT).

Graph Stochastic Attention (GSAT) The official implementation of GSAT for our paper: Interpretable and Generalizable Graph Learning via Stochastic Att

85 Nov 27, 2022
Distributed DataLoader For Pytorch Based On Ray

Dpex——用户无感知分布式数据预处理组件 一、前言 随着GPU与CPU的算力差距越来越大以及模型训练时的预处理Pipeline变得越来越复杂,CPU部分的数据预处理已经逐渐成为了模型训练的瓶颈所在,这导致单机的GPU配置的提升并不能带来期望的线性加速。预处理性能瓶颈的本质在于每个GPU能够使用的C

Dalong 23 Nov 02, 2022
Code for project: "Learning to Minimize Remainder in Supervised Learning".

Learning to Minimize Remainder in Supervised Learning Code for project: "Learning to Minimize Remainder in Supervised Learning". Requirements and Envi

Yan Luo 0 Jul 18, 2021
Source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals.

PatchGraph This repository contains the source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals. Installation Creat

Paloma Sodhi 11 Dec 15, 2022
PyGCL: Graph Contrastive Learning Library for PyTorch

PyGCL: Graph Contrastive Learning for PyTorch PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL com

GCL: Graph Contrastive Learning Library for PyTorch 594 Jan 08, 2023
Leaderboard and Visualization for RLCard

RLCard Showdown This is the GUI support for the RLCard project and DouZero project. RLCard-Showdown provides evaluation and visualization tools to hel

Data Analytics Lab at Texas A&M University 246 Dec 26, 2022
Spearmint Bayesian optimization codebase

Spearmint Spearmint is a software package to perform Bayesian optimization. The Software is designed to automatically run experiments (thus the code n

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 1.5k Dec 29, 2022
MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space

Update (20 Jan 2020): MODALS on text data is avialable MODALS MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space Table of Conte

38 Dec 15, 2022
Image-Stitching - Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm

About The Project Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm (Random Sample Consensus). Author: Andreas P

Andreas Panayiotou 3 Jan 03, 2023
DI-HPC is an acceleration operator component for general algorithm modules in reinforcement learning algorithms

DI-HPC: Decision Intelligence - High Performance Computation DI-HPC is an acceleration operator component for general algorithm modules in reinforceme

OpenDILab 185 Dec 29, 2022
Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.

REDQ source code Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05

109 Dec 16, 2022
This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

Miaoyun Zhao 43 Dec 27, 2022
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Jake YANG 62 Nov 21, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022