LBBA-boosted WSOD

Overview

LBBA-boosted WSOD

Summary

Our code is based on ruotianluo/pytorch-faster-rcnn and WSCDN

Sincerely thanks for your resources.

Newer version of our code (based on Detectron 2) work in progress.

Hardware

We use one RTX 2080Ti GPU (11GB) to train and evaluate our method, GPU with larger memory is better (e.g., TITAN RTX with 24GB memory)

Requirements

  • Python 3.6 or higher
  • CUDA 10.1 with cuDNN 7.6.2
  • PyTorch 1.2.0
  • numpy 1.18.1
  • opencv 3.4.2

We provide a full requirements.txt (namely lbba_requirements.txt) in the workspace (lbba_boosted_wsod directory).

Additional resources

Google Drive

Description

  • selective_search_data: precomputed proposals of VOC 2007/2012
  • pretrained_models/imagenet_pretrain: imagenet pretrained models of WSOD backbone/LBBA backbone
  • pretrained_models/pretrained_on_wsddn: pretrained WSOD network of VOC 2007/2012, using this pretrained model usually converges faster and more stable.
  • models/voc07: our pretrained WSOD
  • models/lbba: our pretrained LBBA
  • codes_zip: our code template of LBBA training procedure and LBBA-boosted WSOD training procedure

Prepare

Environment

We use Anaconda to construct our experimental environment.

Install all required packages (or simply follow lbba_requirements.txt).

Essential Data

We have initialized all directories with gitkeep files.

first, cd lbba_boosted_wsod

then, download selective_search_data/* into data/selective_search_data

download pretrained_models/imagenet_pretrain/* into data/imagenet_weights

download pretrained_models/pretrained_on_wsddn/* into data/wsddn_weights

Datasets

Same with rbgirshick/py-faster-rcnn

For example, PASCAL VOC 2007 dataset

  1. Download the training, validation, test data and VOCdevkit

    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar
  2. Extract all of these tars into one directory named VOCdevkit

    tar xvf VOCtrainval_06-Nov-2007.tar
    tar xvf VOCtest_06-Nov-2007.tar
    tar xvf VOCdevkit_08-Jun-2007.tar
  3. It should have this basic structure

    $VOCdevkit/                           # development kit
    $VOCdevkit/VOCcode/                   # VOC utility code
    $VOCdevkit/VOC2007                    # image sets, annotations, etc.
    # ... and several other directories ...
  4. Create symlinks for the PASCAL VOC dataset

    cd $FRCN_ROOT/data
    ln -s $VOCdevkit VOCdevkit2007

Evaluate our WSOD

Download models/voc07/voc07_55.8.pth to lbba_boosted_wsod/

./test_voc07.sh 0 pascal_voc vgg16 voc07_55.8.pth

Note that different environments might result in a slight performance drop. For example, we obtain 55.8 mAP with CUDA 10.1 but obtain 55.5 mAP using the same code with CUDA 11.

Train WSOD

Download models/lbba/lbba_final.pth (or lbba_init.pth) to lbba_boosted_wsod/

bash train_wsod.sh 1 pascal_voc vgg16 voc07_wsddn_pre lbba_final.pth

Note that we provide different LBBA checkpoints (initialization stage, final stage, or even one-class adjuster mentioned in the suppl.).

Citation

@InProceedings{Dong_2021_ICCV,
    author    = {Dong, Bowen and Huang, Zitong and Guo, Yuelin and Wang, Qilong and Niu, Zhenxing and Zuo, Wangmeng},
    title     = {Boosting Weakly Supervised Object Detection via Learning Bounding Box Adjusters},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {2876-2885}
}
Owner
Martin Dong
HIT student, major in Computer Science and Technology. CS.CV, object detection, segmentation, generation.
Martin Dong
Parameter-ensemble-differential-evolution - Shows how to do parameter ensembling using differential evolution.

Ensembling parameters with differential evolution This repository shows how to ensemble parameters of two trained neural networks using differential e

Sayak Paul 9 May 04, 2022
Educational API for 3D Vision using pose to control carton.

Educational API for 3D Vision using pose to control carton.

41 Jul 10, 2022
Churn prediction

Churn-prediction Churn-prediction Data preprocessing:: Label encoder is used to normalize the categorical variable Data Transformation:: For each data

1 Sep 28, 2022
Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis

WASP2 (Currently in pre-development): Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis Requ

McVicker Lab 2 Aug 11, 2022
Auxiliary data to the CHIIR paper Searching to Learn with Instructional Scaffolding

Searching to Learn with Instructional Scaffolding This is the data and analysis code for the paper "Searching to Learn with Instructional Scaffolding"

Arthur Câmara 2 Mar 02, 2022
A working implementation of the Categorical DQN (Distributional RL).

Categorical DQN. Implementation of the Categorical DQN as described in A distributional Perspective on Reinforcement Learning. Thanks to @tudor-berari

Florin Gogianu 98 Sep 20, 2022
Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented at RAI 2021.

Can Active Learning Preemptively Mitigate Fairness Issues? Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented a

ElementAI 7 Aug 12, 2022
Learn about quantum computing and algorithm on quantum computing

quantum_computing this repo contains everything i learn about quantum computing and algorithm on quantum computing what is aquantum computing quantum

arfy slowy 8 Dec 25, 2022
Fast image augmentation library and an easy-to-use wrapper around other libraries

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
[CVPR2021 Oral] End-to-End Video Instance Segmentation with Transformers

VisTR: End-to-End Video Instance Segmentation with Transformers This is the official implementation of the VisTR paper: Installation We provide instru

Yuqing Wang 687 Jan 07, 2023
Probabilistic Programming and Statistical Inference in PyTorch

PtStat Probabilistic Programming and Statistical Inference in PyTorch. Introduction This project is being developed during my time at Cogent Labs. The

Stefano Peluchetti 109 Nov 26, 2022
tinykernel - A minimal Python kernel so you can run Python in your Python

tinykernel - A minimal Python kernel so you can run Python in your Python

fast.ai 37 Dec 02, 2022
Clustergram - Visualization and diagnostics for cluster analysis in Python

Clustergram Visualization and diagnostics for cluster analysis Clustergram is a diagram proposed by Matthias Schonlau in his paper The clustergram: A

Martin Fleischmann 96 Dec 26, 2022
PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

Subin An 8 Nov 21, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
A library that allows for inference on probabilistic models

Bean Machine Overview Bean Machine is a probabilistic programming language for inference over statistical models written in the Python language using

Meta Research 234 Dec 29, 2022
[WACV 2022] Contextual Gradient Scaling for Few-Shot Learning

CxGrad - Official PyTorch Implementation Contextual Gradient Scaling for Few-Shot Learning Sanghyuk Lee, Seunghyun Lee, and Byung Cheol Song In WACV 2

Sanghyuk Lee 4 Dec 05, 2022
Code for BMVC2021 paper "Boundary Guided Context Aggregation for Semantic Segmentation"

Boundary-Guided-Context-Aggregation Boundary Guided Context Aggregation for Semantic Segmentation Haoxiang Ma, Hongyu Yang, Di Huang In BMVC'2021 Pape

Haoxiang Ma 31 Jan 08, 2023
Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation'

OD-Rec Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation' Paper, saved teacher models and Andro

Xin Xia 11 Nov 22, 2022
An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

deepbci 272 Jan 08, 2023