Convolutional Neural Network to detect deforestation in the Amazon Rainforest

Overview

Convolutional Neural Network to detect deforestation in the Amazon Rainforest

This project is part of my final work as an Aerospace Engineering student, and it comprises the development of a convolutional neural network (CNN) capable of classifying SAR images of deforestation in the Amazon Rainforest. The database used to train the CNN was created using the imagery avaiable in the European Space Agency (ESA) portal Copernicus.

Choosing the target area

The target area was the region inside the municipality of São Félix do Xingu, in the state of Pará, Brazil, and the sensing was made in July 5th, 2021. This city is particularly suitable for this project since it is the number one in cumulative forest degradation up to 2020, according to the National Institute of Space Research (INPE). Around 24% of São Félix's territory (more than 83 thousands square kilometers, that is more than the territory of Austria) has already been deforested.

Collecting de dataset

Synthetic Aperture Array (SAR) imaging is a method of remote sensing that operates beyond the visible light spectrum, using microwaves to form the image. The radiation in this wavelength is less susceptible to atmospheric interference than in the optical range. This is particularly fitting for monitoring the Amazon Rainforest, a region considerably umid and prone to cloud formation in a great part of the year. The downside is that, alternatively, a SAR image is less intuitive to be interpreted by a human eye than an optical image.

In order to remove the aspect of a televison tuned to a dead channel, it is necessary to pre-process the colleceted images. More details on this process will be avaiable in a near future (when my work will be published by the library of Universidade de Brasília). For the time being, it suffices to say that the original image turned into 27 new image as the one that follows:

Everyone of these new images were sliced in small chunks, resulting in about 1800 samples that comprised the dataset to be used to train the neural network that has yet to be developed.

Labelling the samples

As the above picture can demonstrate, the resulting faux-colors of the pre-processing step highlight the contrast between the areas where the forest is preserved and those where there are deforestation hotspots. Using high-resolution optical images of the same region as a complementary guide, every sample was manually labeled as one of these four categories:

  • totally preserved, when there is no trace of deforestation;
  • partially preserved, when there is some trace of deforestation, but the preserved prevail;
  • partially deforested, when the deforested area is the prevailing feature;
  • totally deforested, when there is no trace of preserved area.

Later in the CNN trainin step it will be clearer that this categorization were not optimal, to say the least.

Developing de convolutional neural network

CNN is a deep neural network specifically developed to be applied in the recognition of visual pattern. This architecture is made by two kinds of hidden layers:

  • a convolutional layer (as the name goes), that pass a small window (the filter) through the input image, making a convolutional operation (dot product) between the filter and every chunck of pixels comprised in the perception window;
  • a pooling layer, that gets as an input the output of the convolutional layer and makes a dimensional reduction operation, normally a mean operation with a given number (2x2, 3x3, depending on the desired reduction) of inputs.

These operations are well suited in finding patterns in a picture with a good amount of generalization in order to prevent overfitting. The CNN developed for this work can be seen in the following picture:

Training, testing and results

Using four labels to pre-classify the dataset used to train de CNN ended up to be a bad idea. CNN architecture is good to find commom patterns in a set of pictures, as long as these patterns are well generalized. Trying to differentiate between 'partially preserved' and 'partially deforested' proved to be unfruitful, with a low accuracy (75%) in small epochs and an increasing overfitting with more epochs.

Thus, a merge between these two labels was made, with considerably better results. Bearing this in mind, this new merged label was once again merged with the label 'totally deforested', creating a binary scenario ('preserved', 'not preserved') with even better results (accuracy of about 90%). These results are shown in the following graphics:

You might also like...
Code repo for
Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).

RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network An official PyTorch implementation of the RBSRICNN network as desc

Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

An implementation of quantum convolutional neural network with MindQuantum. Huawei, classifying MNIST dataset

关于实现的一点说明 山东大学 2020级 苏博南 www.subonan.com 文件说明 tools.py 这里面主要有两个函数: resize(a, lenb) 这其实是我找同学写的一个小算法hhh。给出一个$28\times 28$的方阵a,返回一个$lenb\times lenb$的方阵。因

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network)

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network) This is PneumoniaDiagnose, an artificially intellig

TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

Convolutional neural network that analyzes self-generated images in a variety of languages to find etymological similarities

This project is a convolutional neural network (CNN) that analyzes self-generated images in a variety of languages to find etymological similarities. Specifically, the goal is to prove that computer vision can be used to identify cognates known to exist, and perhaps lead linguists to evidence of unknown cognates.

Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Using LSTM to detect spoofing attacks in an Air-Ground network
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks
DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

English | 简体中文 Introduction DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks Reference Pat

Releases(v1.0.0)
  • v1.0.0(Feb 6, 2022)

    What's Changed

    • Update README.md by @diogosens in https://github.com/diogosens/cnn_sar_image_classification/pull/1
    • Add files via upload by @diogosens in https://github.com/diogosens/cnn_sar_image_classification/pull/2
    • Update readme by @diogosens in https://github.com/diogosens/cnn_sar_image_classification/pull/3
    • Update README.md by @diogosens in https://github.com/diogosens/cnn_sar_image_classification/pull/4
    • Update readme by @diogosens in https://github.com/diogosens/cnn_sar_image_classification/pull/5

    New Contributors

    • @diogosens made their first contribution in https://github.com/diogosens/cnn_sar_image_classification/pull/1

    Full Changelog: https://github.com/diogosens/cnn_sar_image_classification/commits/v1.0.0

    Source code(tar.gz)
    Source code(zip)
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

Explosion 30 Oct 09, 2022
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution.

WSRGlow The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution. Audio sa

Kexun Zhang 96 Jan 03, 2023
ICSS - Interactive Continual Semantic Segmentation

Presentation This repository contains the code of our paper: Weakly-supervised c

Alteia 9 Jul 23, 2022
A Python module for the generation and training of an entry-level feedforward neural network.

ff-neural-network A Python module for the generation and training of an entry-level feedforward neural network. This repository serves as a repurposin

Riadh 2 Jan 31, 2022
A fast implementation of bss_eval metrics for blind source separation

fast_bss_eval Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ? Fear no more! fast_bss_eval i

Robin Scheibler 99 Dec 13, 2022
OpenMMLab Image Classification Toolbox and Benchmark

Introduction English | 简体中文 MMClassification is an open source image classification toolbox based on PyTorch. It is a part of the OpenMMLab project. D

OpenMMLab 1.8k Jan 03, 2023
Framework that uses artificial intelligence applied to mathematical models to make predictions

LiconIA Framework that uses artificial intelligence applied to mathematical models to make predictions Interface Overview Table of contents [TOC] 1 Ar

4 Jun 20, 2021
A new GCN model for Point Cloud Analyse

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for VA-GCN in pytorch. Classification (ModelNet10/40) Data Preparation D

12 Feb 02, 2022
PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

Zechen Bai 12 Jul 08, 2022
Implementation of DropLoss for Long-Tail Instance Segmentation in Pytorch

[AAAI 2021]DropLoss for Long-Tail Instance Segmentation [AAAI 2021] DropLoss for Long-Tail Instance Segmentation Ting-I Hsieh*, Esther Robb*, Hwann-Tz

Tim 37 Dec 02, 2022
This is the face keypoint train code of project face-detection-project

face-key-point-pytorch 1. Data structure The structure of landmarks_jpg is like below: |--landmarks_jpg |----AFW |------AFW_134212_1_0.jpg |------AFW_

I‘m X 3 Nov 27, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

Anton Jeran Ratnarajah 89 Dec 22, 2022
Joint Gaussian Graphical Model Estimation: A Survey

Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s

Koyejo Lab 1 Aug 10, 2022
Script utilizando OpenCV e modelo Machine Learning para detectar o uso de máscaras.

Reconhecendo máscaras Este repositório contém um script em Python3 que reconhece se um rosto está ou não portando uma máscara! O código utiliza da bib

Maria Eduarda de Azevedo Silva 168 Oct 20, 2022
scikit-learn inspired API for CRFsuite

sklearn-crfsuite sklearn-crfsuite is a thin CRFsuite (python-crfsuite) wrapper which provides interface simlar to scikit-learn. sklearn_crfsuite.CRF i

417 Dec 20, 2022
Unofficial implementation of the paper: PonderNet: Learning to Ponder in TensorFlow

PonderNet-TensorFlow This is an Unofficial Implementation of the paper: PonderNet: Learning to Ponder in TensorFlow. Official PyTorch Implementation:

1 Oct 23, 2022
Codes and Data Processing Files for our paper.

Code Scripts and Processing Files for EEG Sleep Staging Paper 1. Folder Tree ./src_preprocess (data preprocessing files for SHHS and Sleep EDF) sleepE

Chaoqi Yang 18 Dec 12, 2022