Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)

Related tags

Deep LearningHOTR
Overview


Official PyTorch Implementation for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'2021, Oral Presentation)

HOTR: End-to-End Human-Object Interaction Detection with Transformers

HOTR is a novel framework which directly predicts a set of {human, object, interaction} triplets from an image using a transformer-based encoder-decoder. Through the set-level prediction, our method effectively exploits the inherent semantic relationships in an image and does not require time-consuming post-processing which is the main bottleneck of existing methods. Our proposed algorithm achieves the state-of-the-art performance in two HOI detection benchmarks with an inference time under 1 ms after object detection.

HOTR is composed of three main components: a shared encoder with a CNN backbone, a parallel decoder, and the recomposition layer to generate final HOI triplets. The overview of our pipeline is presented below.

1. Environmental Setup

$ conda create -n kakaobrain python=3.7
$ conda install -c pytorch pytorch torchvision # PyTorch 1.7.1, torchvision 0.8.2, CUDA=11.0
$ conda install cython scipy
$ pip install pycocotools
$ pip install opencv-python
$ pip install wandb

2. HOI dataset setup

Our current version of HOTR supports the experiments for V-COCO dataset. Download the v-coco dataset under the pulled directory.

# V-COCO setup
$ git clone https://github.com/s-gupta/v-coco.git
$ cd v-coco
$ ln -s [:COCO_DIR] coco/images # COCO_DIR contains images of train2014 & val2014
$ python script_pick_annotations.py [:COCO_DIR]/annotations

If you wish to download the v-coco on our own directory, simply change the 'data_path' argument to the directory you have downloaded the v-coco dataset.

--data_path [:your_own_directory]/v-coco

3. How to Train/Test HOTR on V-COCO dataset

For testing, you can either use your own trained weights and pass the directory to the 'resume' argument, or use our provided weights. Below is the example of how you should edit the Makefile.

# [Makefile]
# Testing your own trained weights
multi_test:
  python -m torch.distributed.launch \
		--nproc_per_node=8 \
    ...
    --resume checkpoints/vcoco/KakaoBrain/multi_run_000001/best.pth # the best performing checkpoint is saved in this format

# Testing our provided trained weights
multi_test:
  python -m torch.distributed.launch \
		--nproc_per_node=8 \
    ...
    --resume checkpoints/vcoco/q16.pth # download the q16.pth as described below.

In order to use our provided weights, you can download the weights from this link. Then, pass the directory of the downloaded file (for example, we put the weights under the directory checkpoints/vcoco/q16.pth) to the 'resume' argument as well.

# multi-gpu training / testing (8 GPUs)
$ make multi_[train/test]

# single-gpu training / testing
$ make single_[train/test]

4. Results

Here, we provide improved results of V-COCO Scenario 1 (58.9 mAP, 0.5ms) from the version of our initial submission (55.2 mAP, 0.9ms). This is obtained "without" applying any priors on the scores (see iCAN).

Epoch # queries Scenario 1 Scenario 2 Checkpoint
100 16 58.9 63.8 download

If you want to use pretrained weights for inference, download the pretrained weights (from the above link) under checkpoints/vcoco/ and match the interaction query argument as described in the weight file (others are already set in the Makefile). Our evaluation code follows the exact implementations of the official python v-coco evaluation. You can test the weights by the command below (e.g., the weight file is named as q16.pth, which denotes that the model uses 16 interaction queries).

python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --use_env vcoco_main.py \
    --batch_size 2 \
    --HOIDet \
    --share_enc \
    --pretrained_dec \
    --num_hoi_queries [:query_num] \
    --temperature 0.05 \ # use the exact same temperature value that you used during training!
    --object_threshold 0 \
    --no_aux_loss \
    --eval \
    --dataset_file vcoco \
    --data_path v-coco \
    --resume checkpoints/vcoco/[:query_num].pth

The results will appear as the following:

[Logger] Number of params:  51181950
Evaluation Inference (V-COCO)  [308/308]  eta: 0:00:00    time: 0.2063  data: 0.0127  max mem: 1578
[stats] Total Time (test) : 0:01:05 (0.2114 s / it)
[stats] HOI Recognition Time (avg) : 0.5221 ms
[stats] Distributed Gathering Time : 0:00:49
[stats] Score Matrix Generation completed

============= AP (Role scenario_1) ==============
               hold_obj: AP = 48.99 (#pos = 3608)
              sit_instr: AP = 47.81 (#pos = 1916)
             ride_instr: AP = 67.04 (#pos = 556)
               look_obj: AP = 40.57 (#pos = 3347)
              hit_instr: AP = 76.42 (#pos = 349)
                hit_obj: AP = 71.27 (#pos = 349)
                eat_obj: AP = 55.75 (#pos = 521)
              eat_instr: AP = 67.57 (#pos = 521)
             jump_instr: AP = 71.44 (#pos = 635)
              lay_instr: AP = 57.09 (#pos = 387)
    talk_on_phone_instr: AP = 49.07 (#pos = 285)
              carry_obj: AP = 34.75 (#pos = 472)
              throw_obj: AP = 52.37 (#pos = 244)
              catch_obj: AP = 48.80 (#pos = 246)
              cut_instr: AP = 49.58 (#pos = 269)
                cut_obj: AP = 57.02 (#pos = 269)
 work_on_computer_instr: AP = 67.44 (#pos = 410)
              ski_instr: AP = 49.35 (#pos = 424)
             surf_instr: AP = 77.07 (#pos = 486)
       skateboard_instr: AP = 86.44 (#pos = 417)
            drink_instr: AP = 38.67 (#pos = 82)
               kick_obj: AP = 73.92 (#pos = 180)
               read_obj: AP = 44.81 (#pos = 111)
        snowboard_instr: AP = 81.25 (#pos = 277)
| mAP(role scenario_1): 58.94
----------------------------------------------------

The HOI recognition time is calculated by the end-to-end inference time excluding the object detection time.

5. Auxiliary Loss

HOTR follows the auxiliary loss of DETR, where the loss between the ground truth and each output of the decoder layer is also computed. The ground-truth for the auxiliary outputs are matched with the ground-truth HOI triplets with our proposed Hungarian Matcher.

6. Temperature Hyperparameter, tau

Based on our experimental results, the temperature hyperparameter is sensitive to the number of interaction queries and the coefficient for the index loss and index cost, and the number of decoder layers. Empirically, a larger number of queries require a larger tau, and a smaller coefficient for the loss and cost for HO Pointers requires a smaller tau (e.g., for 16 interaction queries, tau=0.05 for the default set_cost_idx=1, hoi_idx_loss_coef=1, hoi_act_loss_coef=10 shows the best result). The initial version of HOTR (with 55.2 mAP) has been trained with 100 queries, which required a larger tau (tau=0.1). There might be better results than the tau we used in our paper according to these three factors. Feel free to explore yourself!

7. Citation

If you find this code helpful for your research, please cite our paper.

@inproceedings{kim2021hotr,
  title={HOTR: End-to-End Human-Object Interaction Detection with Transformers},
  author    = {Bumsoo Kim and
               Junhyun Lee and
               Jaewoo Kang and
               Eun-Sol Kim and
               Hyunwoo J. Kim},
  booktitle = {CVPR},
  publisher = {IEEE},
  year      = {2021}
}

8. Contact for Issues

Bumsoo Kim, [email protected]

9. License

This project is licensed under the terms of the Apache License 2.0. Copyright 2021 Kakao Brain Corp. https://www.kakaobrain.com All Rights Reserved.

Owner
Kakao Brain
Kakao Brain Corp.
Kakao Brain
Open source Python implementation of the HDR+ photography pipeline

hdrplus-python Open source Python implementation of the HDR+ photography pipeline, originally developped by Google and presented in a 2016 article. Th

77 Jan 05, 2023
Residual Pathway Priors for Soft Equivariance Constraints

Residual Pathway Priors for Soft Equivariance Constraints This repo contains the implementation and the experiments for the paper Residual Pathway Pri

Marc Finzi 13 Oct 12, 2022
Equivariant layers for RC-complement symmetry in DNA sequence data

Equi-RC Equivariant layers for RC-complement symmetry in DNA sequence data This is a repository that implements the layers as described in "Reverse-Co

7 May 19, 2022
End-To-End Crowdsourcing

End-To-End Crowdsourcing Comparison of traditional crowdsourcing approaches to a state-of-the-art end-to-end crowdsourcing approach LTNet on sentiment

Andreas Koch 1 Mar 06, 2022
Implicit Deep Adaptive Design (iDAD)

Implicit Deep Adaptive Design (iDAD) This code supports the NeurIPS paper 'Implicit Deep Adaptive Design: Policy-Based Experimental Design without Lik

Desi 12 Aug 14, 2022
Model that predicts the probability of a Twitter user being anti-vaccination.

stylebody {text-align: justify}/style AVAXTAR: Anti-VAXx Tweet AnalyzeR AVAXTAR is a python package to identify anti-vaccine users on twitter. The

10 Sep 27, 2022
TLoL (Python Module) - League of Legends Deep Learning AI (Research and Development)

TLoL-py - League of Legends Deep Learning Library TLoL-py is the Python component of the TLoL League of Legends deep learning library. It provides a s

7 Nov 29, 2022
Portfolio asset allocation strategies: from Markowitz to RNNs

Portfolio asset allocation strategies: from Markowitz to RNNs Research project to explore different approaches for optimal portfolio allocation starti

Luigi Filippo Chiara 1 Feb 05, 2022
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

Frank Liu 26 Oct 13, 2022
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

Holy Wu 35 Jan 01, 2023
Expand human face editing via Global Direction of StyleCLIP, especially to maintain similarity during editing.

Oh-My-Face This project is based on StyleCLIP, RIFE, and encoder4editing, which aims to expand human face editing via Global Direction of StyleCLIP, e

AiLin Huang 51 Nov 17, 2022
Efficient and intelligent interactive segmentation annotation software

Efficient and intelligent interactive segmentation annotation software

294 Dec 30, 2022
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have underg

Nafis Ahmed 1 Dec 28, 2021
Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022
CS506-Spring2022 - Code and Slides for Boston University CS 506

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston

Lance Galletti 17 May 06, 2022
ppo_pytorch_cpp - an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

Martin Huber 59 Dec 09, 2022
A PyTorch Implementation of "Neural Arithmetic Logic Units"

Neural Arithmetic Logic Units [WIP] This is a PyTorch implementation of Neural Arithmetic Logic Units by Andrew Trask, Felix Hill, Scott Reed, Jack Ra

Kevin Zakka 181 Nov 18, 2022
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization

Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization This repository contains the source code for the paper (link wi

Rakuten Group, Inc. 0 Nov 19, 2021
A working implementation of the Categorical DQN (Distributional RL).

Categorical DQN. Implementation of the Categorical DQN as described in A distributional Perspective on Reinforcement Learning. Thanks to @tudor-berari

Florin Gogianu 98 Sep 20, 2022