Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)

Related tags

Deep LearningHOTR
Overview


Official PyTorch Implementation for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'2021, Oral Presentation)

HOTR: End-to-End Human-Object Interaction Detection with Transformers

HOTR is a novel framework which directly predicts a set of {human, object, interaction} triplets from an image using a transformer-based encoder-decoder. Through the set-level prediction, our method effectively exploits the inherent semantic relationships in an image and does not require time-consuming post-processing which is the main bottleneck of existing methods. Our proposed algorithm achieves the state-of-the-art performance in two HOI detection benchmarks with an inference time under 1 ms after object detection.

HOTR is composed of three main components: a shared encoder with a CNN backbone, a parallel decoder, and the recomposition layer to generate final HOI triplets. The overview of our pipeline is presented below.

1. Environmental Setup

$ conda create -n kakaobrain python=3.7
$ conda install -c pytorch pytorch torchvision # PyTorch 1.7.1, torchvision 0.8.2, CUDA=11.0
$ conda install cython scipy
$ pip install pycocotools
$ pip install opencv-python
$ pip install wandb

2. HOI dataset setup

Our current version of HOTR supports the experiments for V-COCO dataset. Download the v-coco dataset under the pulled directory.

# V-COCO setup
$ git clone https://github.com/s-gupta/v-coco.git
$ cd v-coco
$ ln -s [:COCO_DIR] coco/images # COCO_DIR contains images of train2014 & val2014
$ python script_pick_annotations.py [:COCO_DIR]/annotations

If you wish to download the v-coco on our own directory, simply change the 'data_path' argument to the directory you have downloaded the v-coco dataset.

--data_path [:your_own_directory]/v-coco

3. How to Train/Test HOTR on V-COCO dataset

For testing, you can either use your own trained weights and pass the directory to the 'resume' argument, or use our provided weights. Below is the example of how you should edit the Makefile.

# [Makefile]
# Testing your own trained weights
multi_test:
  python -m torch.distributed.launch \
		--nproc_per_node=8 \
    ...
    --resume checkpoints/vcoco/KakaoBrain/multi_run_000001/best.pth # the best performing checkpoint is saved in this format

# Testing our provided trained weights
multi_test:
  python -m torch.distributed.launch \
		--nproc_per_node=8 \
    ...
    --resume checkpoints/vcoco/q16.pth # download the q16.pth as described below.

In order to use our provided weights, you can download the weights from this link. Then, pass the directory of the downloaded file (for example, we put the weights under the directory checkpoints/vcoco/q16.pth) to the 'resume' argument as well.

# multi-gpu training / testing (8 GPUs)
$ make multi_[train/test]

# single-gpu training / testing
$ make single_[train/test]

4. Results

Here, we provide improved results of V-COCO Scenario 1 (58.9 mAP, 0.5ms) from the version of our initial submission (55.2 mAP, 0.9ms). This is obtained "without" applying any priors on the scores (see iCAN).

Epoch # queries Scenario 1 Scenario 2 Checkpoint
100 16 58.9 63.8 download

If you want to use pretrained weights for inference, download the pretrained weights (from the above link) under checkpoints/vcoco/ and match the interaction query argument as described in the weight file (others are already set in the Makefile). Our evaluation code follows the exact implementations of the official python v-coco evaluation. You can test the weights by the command below (e.g., the weight file is named as q16.pth, which denotes that the model uses 16 interaction queries).

python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --use_env vcoco_main.py \
    --batch_size 2 \
    --HOIDet \
    --share_enc \
    --pretrained_dec \
    --num_hoi_queries [:query_num] \
    --temperature 0.05 \ # use the exact same temperature value that you used during training!
    --object_threshold 0 \
    --no_aux_loss \
    --eval \
    --dataset_file vcoco \
    --data_path v-coco \
    --resume checkpoints/vcoco/[:query_num].pth

The results will appear as the following:

[Logger] Number of params:  51181950
Evaluation Inference (V-COCO)  [308/308]  eta: 0:00:00    time: 0.2063  data: 0.0127  max mem: 1578
[stats] Total Time (test) : 0:01:05 (0.2114 s / it)
[stats] HOI Recognition Time (avg) : 0.5221 ms
[stats] Distributed Gathering Time : 0:00:49
[stats] Score Matrix Generation completed

============= AP (Role scenario_1) ==============
               hold_obj: AP = 48.99 (#pos = 3608)
              sit_instr: AP = 47.81 (#pos = 1916)
             ride_instr: AP = 67.04 (#pos = 556)
               look_obj: AP = 40.57 (#pos = 3347)
              hit_instr: AP = 76.42 (#pos = 349)
                hit_obj: AP = 71.27 (#pos = 349)
                eat_obj: AP = 55.75 (#pos = 521)
              eat_instr: AP = 67.57 (#pos = 521)
             jump_instr: AP = 71.44 (#pos = 635)
              lay_instr: AP = 57.09 (#pos = 387)
    talk_on_phone_instr: AP = 49.07 (#pos = 285)
              carry_obj: AP = 34.75 (#pos = 472)
              throw_obj: AP = 52.37 (#pos = 244)
              catch_obj: AP = 48.80 (#pos = 246)
              cut_instr: AP = 49.58 (#pos = 269)
                cut_obj: AP = 57.02 (#pos = 269)
 work_on_computer_instr: AP = 67.44 (#pos = 410)
              ski_instr: AP = 49.35 (#pos = 424)
             surf_instr: AP = 77.07 (#pos = 486)
       skateboard_instr: AP = 86.44 (#pos = 417)
            drink_instr: AP = 38.67 (#pos = 82)
               kick_obj: AP = 73.92 (#pos = 180)
               read_obj: AP = 44.81 (#pos = 111)
        snowboard_instr: AP = 81.25 (#pos = 277)
| mAP(role scenario_1): 58.94
----------------------------------------------------

The HOI recognition time is calculated by the end-to-end inference time excluding the object detection time.

5. Auxiliary Loss

HOTR follows the auxiliary loss of DETR, where the loss between the ground truth and each output of the decoder layer is also computed. The ground-truth for the auxiliary outputs are matched with the ground-truth HOI triplets with our proposed Hungarian Matcher.

6. Temperature Hyperparameter, tau

Based on our experimental results, the temperature hyperparameter is sensitive to the number of interaction queries and the coefficient for the index loss and index cost, and the number of decoder layers. Empirically, a larger number of queries require a larger tau, and a smaller coefficient for the loss and cost for HO Pointers requires a smaller tau (e.g., for 16 interaction queries, tau=0.05 for the default set_cost_idx=1, hoi_idx_loss_coef=1, hoi_act_loss_coef=10 shows the best result). The initial version of HOTR (with 55.2 mAP) has been trained with 100 queries, which required a larger tau (tau=0.1). There might be better results than the tau we used in our paper according to these three factors. Feel free to explore yourself!

7. Citation

If you find this code helpful for your research, please cite our paper.

@inproceedings{kim2021hotr,
  title={HOTR: End-to-End Human-Object Interaction Detection with Transformers},
  author    = {Bumsoo Kim and
               Junhyun Lee and
               Jaewoo Kang and
               Eun-Sol Kim and
               Hyunwoo J. Kim},
  booktitle = {CVPR},
  publisher = {IEEE},
  year      = {2021}
}

8. Contact for Issues

Bumsoo Kim, [email protected]

9. License

This project is licensed under the terms of the Apache License 2.0. Copyright 2021 Kakao Brain Corp. https://www.kakaobrain.com All Rights Reserved.

Owner
Kakao Brain
Kakao Brain Corp.
Kakao Brain
The official implementation of Autoregressive Image Generation using Residual Quantization (CVPR '22)

Autoregressive Image Generation using Residual Quantization (CVPR 2022) The official implementation of "Autoregressive Image Generation using Residual

Kakao Brain 529 Dec 30, 2022
DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

8.3k Dec 31, 2022
Pomodoro timer that acknowledges the inexorable, infinite passage of time

Pomodouroboros Most pomodoro trackers assume you're going to start them. But time and tide wait for no one - the great pomodoro of the cosmos is cold

Glyph 66 Dec 13, 2022
The official implementation for "FQ-ViT: Fully Quantized Vision Transformer without Retraining".

FQ-ViT [arXiv] This repo contains the official implementation of "FQ-ViT: Fully Quantized Vision Transformer without Retraining". Table of Contents In

132 Jan 08, 2023
Use evolutionary algorithms instead of gridsearch in scikit-learn

sklearn-deap Use evolutionary algorithms instead of gridsearch in scikit-learn. This allows you to reduce the time required to find the best parameter

rsteca 709 Jan 03, 2023
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 03, 2023
Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Peter Schaldenbrand 247 Dec 23, 2022
Code for the paper "A Study of Face Obfuscation in ImageNet"

A Study of Face Obfuscation in ImageNet Code for the paper: A Study of Face Obfuscation in ImageNet Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng,

35 Oct 04, 2022
Reinforcement Learning for the Blackjack

Reinforcement Learning for Blackjack Author: ZHA Mengyue Math Department of HKUST Problem Statement We study playing Blackjack by reinforcement learni

Dolores 3 Jan 24, 2022
Age Progression/Regression by Conditional Adversarial Autoencoder

Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE) TensorFlow implementation of the algorithm in the paper Age Progression/Regre

Zhifei Zhang 603 Dec 22, 2022
CSD: Consistency-based Semi-supervised learning for object Detection

CSD: Consistency-based Semi-supervised learning for object Detection (NeurIPS 2019) By Jisoo Jeong, Seungeui Lee, Jee-soo Kim, Nojun Kwak Installation

80 Dec 15, 2022
🙄 Difficult algorithm, Simple code.

🎉TensorFlow2.0-Examples🎉! "Talk is cheap, show me the code." ----- Linus Torvalds Created by YunYang1994 This tutorial was designed for easily divin

1.7k Dec 25, 2022
particle tracking model, works with the ROMS output file(qck.nc, his.nc)

particle-tracking-model-for-ROMS particle tracking model, works with the ROMS output file(qck.nc, his.nc) description this is a 2-dimensional particle

xusheng 1 Jan 11, 2022
Retrieval.pytorch - The code we used in [2020 DIGIX]

Retrieval.pytorch - The code we used in [2020 DIGIX]

Guo-Hua Wang 2 Feb 07, 2022
Learning Representational Invariances for Data-Efficient Action Recognition

Learning Representational Invariances for Data-Efficient Action Recognition Official PyTorch implementation for Learning Representational Invariances

Virginia Tech Vision and Learning Lab 27 Nov 22, 2022
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose (CVPR 2021)

Back to the Feature with PixLoc We introduce PixLoc, a neural network for end-to-end learning of camera localization from an image and a 3D model via

Computer Vision and Geometry Lab 610 Jan 05, 2023
Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation.

Understanding Minimum Bayes Risk Decoding This repo provides code and documentation for the following paper: Müller and Sennrich (2021): Understanding

ZurichNLP 13 May 01, 2022
banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services.

banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services. This library is developed by Bandit ML and ex-authors of Facebook's app

Bandit ML 51 Dec 22, 2022
Tensorflow 2 Object Detection API kurulumu, GPU desteği, custom model hazırlama

Tensorflow 2 Object Detection API Bu tutorial, TensorFlow 2.x'in kararlı sürümü olan TensorFlow 2.3'ye yöneliktir. Bu, görüntülerde / videoda nesne a

46 Nov 20, 2022
Chinese license plate recognition

AgentCLPR 简介 一个基于 ONNXRuntime、AgentOCR 和 License-Plate-Detector 项目开发的中国车牌检测识别系统。 车牌识别效果 支持多种车牌的检测和识别(其中单层车牌识别效果较好): 单层车牌: [[[[373, 282], [69, 284],

AgentMaker 26 Dec 25, 2022