Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models.

Overview

Statutory Interpretation Data Set

This repository contains the data set created for the following research papers:

Savelka, Jaromir, and Kevin D. Ashley. "Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models." Findings of the Association for Computational Linguistics: EMNLP 2021. 2021.

Jaromir Savelka, Huihui Xu, and Kevin D. Ashley. 2019. Improving Sentence Retrieval from Case Law for Statutory Interpretation. In Seventeenth International Conference on Artificial Intelligence and Law (ICAIL ’19), June 17–21, 2019, Montreal, QC, Canada, Floris Bex (Ed.). ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3322640.3326736

Task

Given a statutory provision, user's interest in the meaning of a phrase from the provision, and a list of sentences we would like to rank more highly the sentences that elaborate upon the meaning of the statutory phrase of interest, such as:

  • definitional sentences (e.g., a sentence that provides a test for when the phrase applies)
  • sentences that state explicitly in a different way what the statutory phrase means or state what it does not mean
  • sentences that provide an example, instance, or counterexample of the phrase
  • sentences that show how a court determines whether something is such an example, instance, or counterexample.

Corpus Overview

For this corpus we selected fourty two terms from different provisions of the United States Code.

For each term we have collected a set of sentences by extracting all the sentences mentioning the term from the court decisions retrieved from the Caselaw access project data.

In total the corpus consists of 26,959 sentences.

The sentences are classified into four categories according to their usefulness for the interpretation:

  • high value - sentence intended to define or elaborate on the meaning of the term
  • certain value - sentence that provides grounds to elaborate on the term's meaning
  • potential value - sentence that provides additional information beyond what is known from the provision the term comes from
  • no value - no additional information over what is known from the provision

See Annotation guidelines for additional details.

Data Structure

Each zip file contains data related to one of the fourty two queries. There are four files in total containing the texts of different granularity. These allow to replicate experiments reported in the paper cited above.

  • case
    • original_id - case id from Caselaw access project
    • name
    • short_name
    • date
    • official_date
    • official citation
    • alternate_citations
    • court
    • short_court - court abbreviation
    • jurisdiction
    • short_jurisdiction - jurisdiction abbreviation
    • attorneys
    • parties
    • judges
    • text
  • opinion
    • case_id - pointer to the case the opinion belongs to
    • author
    • type - e.g., concurrence, dissent
    • position - position of the opinion within the case
    • text
  • paragraph
    • case_id - pointer to the case the opinion belongs to
    • opinion_id - pointer to the opinion the paragraph belongs to
    • position - position of the paragraph within the opinion
    • text
  • sentence
    • case_id - pointer to the case the sentence belongs to
    • opinion_id - pointer to the opinion the sentence belongs to
    • paragraph_id - pointer to the paragraph the sentence belongs to
    • position - position of the sentence within the paragraph
    • text
    • label - human-created gold label of the sentence value

Terms of Use

For use of the data we kindly ask you to provide the two following attributions:

Savelka, Jaromir, and Kevin D. Ashley. "Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models." Findings of the Association for Computational Linguistics: EMNLP 2021. 2021.

The President and Fellows of Harvard University, Caselaw access project, Caselaw access project, 2018.

The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022

DG-TrajGen The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022. Our Meth

Wang 25 Sep 26, 2022
PyTorch Connectomics: segmentation toolbox for EM connectomics

Introduction The field of connectomics aims to reconstruct the wiring diagram of the brain by mapping the neural connections at the level of individua

Zudi Lin 132 Dec 26, 2022
Prososdy Morph: A python library for manipulating pitch and duration in an algorithmic way, for resynthesizing speech.

ProMo (Prosody Morph) Questions? Comments? Feedback? Chat with us on gitter! A library for manipulating pitch and duration in an algorithmic way, for

Tim 71 Jan 02, 2023
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

42 Nov 14, 2022
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023
Gif-caption - A straightforward GIF Captioner written in Python

Broksy's GIF Captioner Have you ever wanted to easily caption a GIF without havi

3 Apr 09, 2022
Lecture materials for Cornell CS5785 Applied Machine Learning (Fall 2021)

Applied Machine Learning (Cornell CS5785, Fall 2021) This repo contains executable course notes and slides for the Applied ML course at Cornell and Co

Volodymyr Kuleshov 103 Dec 31, 2022
Python calculations for the position of the sun and moon.

Astral This is 'astral' a Python module which calculates Times for various positions of the sun: dawn, sunrise, solar noon, sunset, dusk, solar elevat

Simon Kennedy 169 Dec 20, 2022
NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation (ACL-IJCNLP 2021)

NeuralWOZ This code is official implementation of "NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation". Sungdong Kim, Mi

NAVER AI 31 Oct 25, 2022
Complete U-net Implementation with keras

U Net Lowered with Keras Complete U-net Implementation with keras Original Paper Link : https://arxiv.org/abs/1505.04597 Special Implementations : The

Sagnik Roy 14 Oct 10, 2022
A more easy-to-use implementation of KPConv

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 35 Dec 14, 2022
Cartoon-StyleGan2 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation

Fine-tuning StyleGAN2 for Cartoon Face Generation

Jihye Back 520 Jan 04, 2023
An Official Repo of CVPR '20 "MSeg: A Composite Dataset for Multi-Domain Segmentation"

This is the code for the paper: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation (CVPR 2020, Official Repo) [CVPR PDF] [Journal PDF] J

226 Nov 05, 2022
Code release for Convolutional Two-Stream Network Fusion for Video Action Recognition

Convolutional Two-Stream Network Fusion for Video Action Recognition

Christoph Feichtenhofer 676 Dec 31, 2022
Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib).

Crab - A Recommendation Engine library for Python Crab is a flexible, fast recommender engine for Python that integrates classic information filtering r

python-recsys 1.2k Dec 21, 2022
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi

Robotics and Perception Group 71 Dec 12, 2022
Training vision models with full-batch gradient descent and regularization

Stochastic Training is Not Necessary for Generalization -- Training competitive vision models without stochasticity This repository implements trainin

Jonas Geiping 32 Jan 06, 2023
PyTorch implementation of TSception V2 using DEAP dataset

TSception This is the PyTorch implementation of TSception V2 using DEAP dataset in our paper: Yi Ding, Neethu Robinson, Su Zhang, Qiuhao Zeng, Cuntai

Yi Ding 27 Dec 15, 2022