Specification language for generating Generalized Linear Models (with or without mixed effects) from conceptual models

Overview

tisane

Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships

TL;DR: Analysts can use Tisane to author generalized linear models with or without mixed effects. Tisane infers statistical models from variable relationships (from domain knowledge) that analysts specify. By doing so, Tisane helps analysts avoid common threats to external and statistical conclusion validity. Analysts do not need to be statistical experts!

Jump to see a tutorial here or see some examples here. Below, we provide an overview of the API and language primitives.


Tisane provides (i) a graph specification language for expressing relationships between variables and (ii) an interactive query and compilation process for inferring a valid statistical model from a set of variables in the graph.

Graph specification language

Variables

There are three types of variables: (i) Units, (ii) Measures, and (iii) SetUp, or environmental, variables.

  • Unit types represent entities that are observed (observed units in the experimental design literature) or the recipients of experimental conditions (experimental units).
# There are 386 adults participating in a study on weight loss.
adult = ts.Unit("member", cardinality=386)
  • Measure types represent attributes of units that are proxies of underlying constructs. Measures can have one of the following data types: numeric, nominal, or ordinal. Numeric measures have values that lie on an interval or ratio scale. Nominal measures are categorical variables without an ordering between categories. Ordinal measures are categorical variables with an ordering between categories.
# Adults have motivation levels.
motivation_level = adult.ordinal("motivation", order=[1, 2, 3, 4, 5, 6])
# Adults have pounds lost. 
pounds_lost = adult.numeric("pounds_lost")
# Adults have one of four racial identities in this study. 
race = adult.nominal("race group", cardinality=4)
  • SetUp types represent study or experimental settings that are global and unrelated to any of the units involved. For example, time is often an environmental variable that differentiates repeated measures but is neither a unit nor a measure.
# Researchers collected 12 weeks of data in this study. 
week = ts.SetUp("Week", order=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])

Design rationale: We derived this type system from how other software tools focused on study design separate their concerns.

Relationships between variables

Analysts can use Tisane to express (i) conceptual and (ii) data measurement relationships between variables.

There are three different types of conceptual relationships.

  • A variable can cause another variable. (e.g., motivation_level.causes(pounds_lost))
  • A variable can be associated with another variable. (e.g., race.associates_with(pounds_lost))
  • One or more variables can moderate the effect of a variable on another variable. (e.g., age.moderates(moderator=[motivation_level], on=pounds_lost)) Currently, a variable, V1, can have a moderated relationship with a variable, V2, without also having a causal or associative relationship with V2.

These relationships are used to construct an internal graph representation of variables and their relationships with one another.

Internally, Tisane constructs a graph representing these relationships. Graph representation is useufl for inferring statistical models (next section).

For example, the below graph represents the above relationships. Rectangular nodes are units. Elliptical nodes are measures and set-up variables. The colored node is the dependent variable in the query.The dotted edges connect units to their measures. The solid edges represent conceptual relationships, as labeled. A graph representation created using DOT

A graph representation created using TikZ

Interactive query and compilation

Analysts query the relationships they have specified (technically, the internal graph represenation) for a statistical model. For each query, analysts must specify (i) a dependent variable to explain using (ii) a set of independent variables.

design = ts.Design(dv=pounds_lost, ivs=[treatment_approach, motivation_level]).assign_data(df)
ts.infer_statistical_model_from_design(design=design)

Query validation: To be a valid query, Tisane verifies that the dependent variable does not cause an independent variable. It would be conceptually incorrect to explain a cause from an effect.

Interaction model

A key aspect of Tisane that distinguishes it from other systems, such as Tea, is the importance of user interaction in guiding the statistical model that is inferred as output and ultimately fit.

Tisane generates a space of candidate statistical models and asks analysts disambiguation questions for (i) including additional main or interaction effects and, if applicable, correlating (or uncorrelating) random slopes and random intercepts as well as (ii) selecting among viable family/link function pairs.

To help analysts, Tisane provides text explanations and visualizations. For example, to show possible family functions, Tisane simulates data to fit a family function and visualizes it on top of a histogram of the analyst's data and explains to the how to use the visualization to compare family functions.

Statistical model inference

After validating a query, Tisane traverses the internal graph representation in order to generate candidate generalized linear models with or without mixed effects. A generalized linear model consists of a model effects structure and a family/link function pair.

Query

Analysts query the relationships they have specified (technically, the internal graph represenation) for a statistical model. For each query, analysts must specify (i) a dependent variable to explain using (ii) a set of independent variables.

Query validation: To be a valid query, Tisane verifies that the dependent variable does not cause an independent variable. It would be conceptually incorrect to explain a cause from an effect.

Statistical model inference

After validating a query, Tisane traverses the internal graph representation in order to generate candidate generalized linear models with or without mixed effects. A generalized linear model consists of a model effects structure and a family/link function pair.

Model effects structure

Tisane generates candidate main effects, interaction effects, and, if applicable, random effects based on analysts' expressed relationships.

  • Tisane aims to direct analysts' attention to variables, especially possible confounders, that the analyst may have overlooked. When generating main effects candidates, Tisane looks for other variables in the graph that may exert causal influence on the dependent variable and are related to the input independent variables.
  • Tisane aims to represent conceptual relationships between variables accurately. Based on the main effects analysts choose to include in their output statistical model, Tisane suggests interaction effects to include. Tisane relies on the moderate relationships analysts specified in their input program to infer interaction effects.
  • Tisane aims to increase the generalizability of statistical analyses and results by automatically detecting the need for and including random effects. Tisane follows the guidelines outlined in [] and [] to generat the maximal random effects structure.

INFERENCE.md explains all inference rules in greater detail.

Family/link function

Family and link functions depend on the data types of dependent variables and their distributions.

Based on the data type of the dependent variable, Tisane suggests matched pairs of possible family and link functions to consider. Tisane ensures that analysts consider only valid pairs of family and link functions.


Limitations

  • Tisane is designed for researchers or analysts who are domain experts and can accurately express their domain knowledge and data measurement/collection details using the Tisane graph specification language. We performed an initial evaluation of the expressive coverage of Tisane's language and found that it is useful for expressing a breadth of study designs common in HCI.

Benefits

Tisane helps analysts avoid common threats to statistical conclusion and external validity.

Specifically, Tisane helps analysts

  • avoid violations of GLM assumptions by inferring random effects and plausible family and link functions
  • fishing and false discovery due to conceptually incomplete statistical models
  • interaction of the causal relationships with units, interaction of the causal realtionships with settings due to not controlling for the appropriate clusters/non-independence of observations as random effects

These are four of the 37 threats to validity Shadish, Cook, and Campbell outline across internal, external, statistical conclusion, and construct validity [1].


Examples

Check out examples here!

References

[1] Cook, T. D., Campbell, D. T., & Shadish, W. (2002). Experimental and quasi-experimental designs for generalized causal inference. Boston, MA: Houghton Mifflin.

Owner
Eunice Jun
PhD student in computer science at University of Washington. Human-computer interaction, statistical analysis, programming languages, all things data.
Eunice Jun
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
MinHash, LSH, LSH Forest, Weighted MinHash, HyperLogLog, HyperLogLog++, LSH Ensemble

datasketch: Big Data Looks Small datasketch gives you probabilistic data structures that can process and search very large amount of data super fast,

Eric Zhu 1.9k Jan 07, 2023
This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

GPRGNN This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network. Hidden state feature extraction i

Jianhao 92 Jan 03, 2023
PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images

wrist-d PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images note: Paper: Under Review at MPDI Diagnostics Submission Date: Novemb

Fatih UYSAL 5 Oct 12, 2022
Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples

Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples This repository is the official implementation of paper [Qimera: Data-free Q

Kanghyun Choi 21 Nov 03, 2022
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
Neural network pruning for finding a sparse computational model for controlling a biological motor task.

MothPruning Scientific Overview Originally inspired by biological nervous systems, deep neural networks (DNNs) are powerful computational tools for mo

Olivia Thomas 0 Dec 14, 2022
Stitch it in Time: GAN-Based Facial Editing of Real Videos

STIT - Stitch it in Time [Project Page] Stitch it in Time: GAN-Based Facial Edit

1.1k Jan 04, 2023
Learning Representations that Support Robust Transfer of Predictors

Transfer Risk Minimization (TRM) Code for Learning Representations that Support Robust Transfer of Predictors Prepare the Datasets Preprocess the Scen

Yilun Xu 15 Dec 07, 2022
Redash reset for python

redash-reset This will use a default REDASH_SECRET_KEY key of c292a0a3aa32397cdb050e233733900f this allows you to reset the password of the user ID bu

Robert Wiggins 5 Nov 14, 2022
Implementation of paper "Self-supervised Learning on Graphs:Deep Insights and New Directions"

SelfTask-GNN A PyTorch implementation of "Self-supervised Learning on Graphs: Deep Insights and New Directions". [paper] In this paper, we first deepe

Wei Jin 85 Oct 13, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
Multi-Stage Progressive Image Restoration

Multi-Stage Progressive Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling Sh

Syed Waqas Zamir 859 Dec 22, 2022
Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

NeuLab 40 Dec 23, 2022
HTSeq is a Python library to facilitate processing and analysis of data from high-throughput sequencing (HTS) experiments.

HTSeq DEVS: https://github.com/htseq/htseq DOCS: https://htseq.readthedocs.io A Python library to facilitate programmatic analysis of data from high-t

HTSeq 57 Dec 20, 2022
Torchreid: Deep learning person re-identification in PyTorch.

Torchreid Torchreid is a library for deep-learning person re-identification, written in PyTorch. It features: multi-GPU training support both image- a

Kaiyang 3.7k Jan 05, 2023
Utility code for use with PyXLL

pyxll-utils There is no need to use this package as of PyXLL 5. All features from this package are now provided by PyXLL. If you were using this packa

PyXLL 10 Dec 18, 2021
A crossplatform menu bar application using mpv as DLNA Media Renderer.

Macast Chinese README A menu bar application using mpv as DLNA Media Renderer. Install MacOS || Windows || Debian Download link: Macast release latest

4.4k Jan 01, 2023
This repository contains the code used to quantitatively evaluate counterfactual examples in the associated paper.

On Quantitative Evaluations of Counterfactuals Install To install required packages with conda, run the following command: conda env create -f requi

Frederik Hvilshøj 1 Jan 16, 2022