Procedural 3D data generation pipeline for architecture

Overview

Synthetic Dataset Generator

Authors:

This is a tool that generates a dataset of synthetic buildings of different typologies.

Arxiv Website Samples

The generated data includes:

  • Mesh files of generated buildings, .obj format
  • Rendered images of the mesh, .png format
  • Rendered segmentation masks, .png format
  • Depth annotation, .png and .exr format
  • Surface normals annotation, .png format
  • Point cloud files, .ply format (the number of points by default is 2048, can be changed in dataset_config.py)

How To Use

  • Install Blender>=2.90. After installation make sure to add blender as an Environment variable.
  • Download the package as a .zip file or:
git clone https://github.com/CDInstitute/CompoNET

*Navigate to the Building-Dataset-Generator folder.

pip install -r requirements.txt

To create completely synthetic buildings use:

run.bat

Or:

blender setup.blend --python dataset.py

Unfortunately, it is not possible to use Blender in background mode as it will not render the image masks correctly.

Note: all the parameters related to the dataset (including any specific parameters for your buildings (e.g. max and min height / width / length)) are to be provided in dataset_config.py. Default values adhere to international standards (min) and most common European values (max):

  • minimum height 3m
  • minimum length and width 6m
  • maximum length, width, height 30 m Other values to set:
  • number of dataset samples
  • building types
  • component materials
  • rendered image dimensions
  • number of points in the point clouds
  • paths to store the generated data
  • option to save the .exr files

Annotation structure

{'img': 'images/0.png', 'category': 'building', 'img_size': (256, 256), '2d_keypoints': [], 'mask': 'masks/0.png', 'img_source': 'synthetic', 'model': 'models/0.obj', 'point_cloud': 'PointCloud/0.ply', 'model_source': 'synthetic', 'trans_mat': 0, 'focal_length': 35.0, 'cam_position': (0.0, 0.0, 0.0), 'inplane_rotation': 0, 'truncated': False, 'occluded': False, 'slightly_occluded': False, 'bbox': [0.0, 0.0, 0.0, 0.0], 'material': ['concrete', 'brick']}

Performance

We ran the dataset generation algorithm for 100 model samples with different input parameters on Windows 10 OS on CPU and GPU using AMD Ryzen 7 3800-X 8-Core Processor and GeForce GTX 1080. Here we report the results for the multiview generation (3 views per model):

GPU Multiview Time (h)
1.7
2.7
0.34
0.8

Citation

Bibtex format

@inproceedings{fedorova2021synthetic,
      title={Synthetic 3D Data Generation Pipeline for Geometric Deep Learning in Architecture}, 
      author={Stanislava Fedorova and Alberto Tono and Meher Shashwat Nigam and Jiayao Zhang and Amirhossein Ahmadnia and Cecilia Bolognesi and Dominik L. Michels},
      year={2021},
}

Generated Image Samples

Owner
Computational Design Institute
501(c)(3) Research Nonprofit for Digital and Humanities
Computational Design Institute
This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your username and app/website.

PasswordGeneratorAndVault This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your us

Chris 1 Feb 26, 2022
Code implementation for the paper 'Conditional Gaussian PAC-Bayes'.

CondGauss This repository contains PyTorch code for the paper Stochastic Gaussian PAC-Bayes. A novel PAC-Bayesian training method is implemented. Ther

0 Nov 01, 2021
Experiments for Fake News explainability project

fake-news-explainability Experiments for fake news explainability project This repository only contains the notebooks used to train the models and eva

Lorenzo Flores (Lj) 1 Dec 03, 2022
Library of various Few-Shot Learning frameworks for text classification

FewShotText This repository contains code for the paper A Neural Few-Shot Text Classification Reality Check Environment setup # Create environment pyt

Thomas Dopierre 47 Jan 03, 2023
Pywonderland - A tour in the wonderland of math with python.

A Tour in the Wonderland of Math with Python A collection of python scripts for drawing beautiful figures and animating interesting algorithms in math

Zhao Liang 4.1k Jan 03, 2023
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

isvd Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning If you find this code useful, you may cite us as: @inprocee

Sami Abu-El-Haija 16 Jan 08, 2023
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 05, 2023
A minimal implementation of Gaussian process regression in PyTorch

pytorch-minimal-gaussian-process In search of truth, simplicity is needed. There exist heavy-weighted libraries, but as you know, we need to go bare b

Sangwoong Yoon 38 Nov 25, 2022
FNet Implementation with TensorFlow & PyTorch

FNet Implementation with TensorFlow & PyTorch. TensorFlow & PyTorch implementation of the paper "FNet: Mixing Tokens with Fourier Transforms". Overvie

Abdelghani Belgaid 1 Feb 12, 2022
Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Patch-Based Deep Autoencoder for Point Cloud Geometry Compression Overview The ever-increasing 3D application makes the point cloud compression unprec

17 Dec 05, 2022
PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT.

MoCo v3 for Self-supervised ResNet and ViT Introduction This is a PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT. The original M

Facebook Research 887 Jan 08, 2023
Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy"

Shapeland Simulator Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy" Download the video at https://www.youtube.com/watch?

TouringPlans.com 70 Dec 14, 2022
MvtecAD unsupervised Anomaly Detection

MvtecAD unsupervised Anomaly Detection This respository is the unofficial implementations of DFR: Deep Feature Reconstruction for Unsupervised Anomaly

0 Feb 25, 2022
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.

News December 27: v1.1.0 New loss functions: CentroidTripletLoss and VICRegLoss Mean reciprocal rank + per-class accuracies See the release notes Than

Kevin Musgrave 5k Jan 05, 2023
[BMVC 2021] Official PyTorch Implementation of Self-supervised learning of Image Scale and Orientation Estimation

Self-Supervised Learning of Image Scale and Orientation Estimation (BMVC 2021) This is the official implementation of the paper "Self-Supervised Learn

Jongmin Lee 17 Nov 10, 2022
A Simulation Environment to train Robots in Large Realistic Interactive Scenes

iGibson: A Simulation Environment to train Robots in Large Realistic Interactive Scenes iGibson is a simulation environment providing fast visual rend

Stanford Vision and Learning Lab 493 Jan 04, 2023
A small library of 3D related utilities used in my research.

utils3D A small library of 3D related utilities used in my research. Installation Install via GitHub pip install git+https://github.com/Steve-Tod/util

Zhenyu Jiang 8 May 20, 2022
Prompts - Read a textfile of prompts and import into anki via ankiconnect

prompts read a textfile of prompts and import into anki via ankiconnect Usage In

Alexander Cobleigh 2 Jul 28, 2022
Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Hiroshechka Y 33 Dec 26, 2022