Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Support Vector Machine".

Overview

On the Equivalence between Neural Network and Support Vector Machine

Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Support Vector Machine".

Cite our paper

Yilan Chen, Wei Huang, Lam M. Nguyen, Tsui-Wei Weng, "On the Equivalence between Neural Network and Support Vector Machine", NeurIPS 2021.

@inproceedings{chen2021equiv,
  title={On the equivalence between neural network and support vector machine},
  author={Yilan Chen and Wei Huang and Lam M. Nguyen and Tsui-Wei Weng},
  booktitle={Advances in Neural Information Processing Systems},
  year={2021}
}

Overview

In this paper, we prove the equivalence between neural network (NN) and support vector machine (SVM), specifically, the infinitely wide NN trained by soft margin loss and the standard soft margin SVM with NTK trained by subgradient descent. Our main theoretical results include establishing the equivalence between NN and a broad family of L2 regularized kernel machines (KMs) with finite-width bounds, which cannot be handled by prior work, and showing that every finite-width NN trained by such regularized loss functions is approximately a KM.

Furthermore, we demonstrate our theory can enable three practical applications, including

  • non-vacuous generalization bound of NN via the corresponding KM;
  • non-trivial robustness certificate for the infinite-width NN (while existing robustness verification methods (e.g. IBP, Fast-Lin, CROWN) would provide vacuous bounds);
  • intrinsically more robust infinite-width NNs than those from previous kernel regression.

See our paper and slides for details.

Equivalence between infinite-width NNs and a family of KMs

Code overview

  • train_sgd.py: train the NN and SVM with NTK with stochastic subgradient descent. Plot the results to verify the equivalence.

  • generalization.py: compute non-vacuous generalization bound of NN via the corresponding KM.

  • regression.py: kernel ridge regression with NTK.

  • robust_svm.py:

    • test(): evaluate the robustness of NN using IBP or SVM with our method in the paper.
    • test_regressions(): evaluate the robustness of kernel ridge regression models using our method.
    • bound_ntk():calculate the lower and upper bound for NTK of two-layer fully-connected NN.
  • ibp.py: functions to calculate IBP bounds. Specified for NTK parameterization.

  • models/model.py: codes for constructing fully-connected neural networks with NTK parameterization.

  • config/:

    • svm_sgd.yaml: configurations and hyper-parameters to train NN and SVM.
    • svm_gene.yaml: configurations and hyper-parameters to calculate generalization bound.

Required environments:

This code is tested on the below environments:

python==3.8.8
torch==1.8.1
neural-tangents==0.3.6

Other required packages can be installed using Conda as follows,

conda create -n equiv-nn-svm python=3.8
conda activate equiv-nn-svm
conda install numpy tqdm matplotlib seaborn pyyaml

For the installation of PyTorch, please reference the instructions from https://pytorch.org/get-started/locally/. For the installation and usage of neural-tangents, please reference the instructions at https://github.com/google/neural-tangents.

Experiments

Train NN and SVM to verify the equivalence

python train_sgd.py

Example of the SGD results

SGD results

Example of the GD results

GD results

Computing non-vacuous generalization bound of NN via the corresponding KM

python generalization.py

Example of the generalization bound results

Generalization bound results

Robustness verification of NN

Add your paths to your NN models in the code and separate by the width. Specify the width of the models you want to verify. Then run the test() function in robust_svm.py.

python -c "import robust_svm; robust_svm.test('nn')"

Robustness verification of SVM

Add your paths to your SVM models in the code. Then run the test() function in robust_svm.py.

python -c "import robust_svm; robust_svm.test('svm')"

robustness verification results

Train kernel ridge regression with NTK models

python regression.py

Robustness verification of kernel ridge regression models

Run test_regressions() function in robust_svm.py.

python -c "import robust_svm; robust_svm.test_regressions()"

robustness verification results

Owner
Leslie
Leslie
Research - dataset and code for 2016 paper Learning a Driving Simulator

the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra

comma.ai 4.1k Jan 02, 2023
🐥A PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI

PyTorch implementation of OpenAI's Finetuned Transformer Language Model This is a PyTorch implementation of the TensorFlow code provided with OpenAI's

Hugging Face 1.4k Jan 05, 2023
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022
Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.

Milano (This is a research project, not an official NVIDIA product.) Documentation https://nvidia.github.io/Milano Milano (Machine learning autotuner

NVIDIA Corporation 147 Dec 17, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
Multi-Modal Machine Learning toolkit based on PyTorch.

简体中文 | English TorchMM 简介 多模态学习工具包 TorchMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 TorchMM 初始版本 v1.0 特性 丰富的任务场景:工具

njustkmg 1 Jan 05, 2022
Bootstrapped Representation Learning on Graphs

Bootstrapped Representation Learning on Graphs This is the PyTorch implementation of BGRL Bootstrapped Representation Learning on Graphs The main scri

NerDS Lab :: Neural Data Science Lab 55 Jan 07, 2023
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

NCVX NCVX: A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning. Please check https://ncvx.org for detailed instruction

SUN Group @ UMN 28 Aug 03, 2022
Lightweight stereo matching network based on MobileNetV1 and MobileNetV2

MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching

Cognitive Systems Research Group 139 Nov 30, 2022
Implementation of SiameseXML (ICML 2021)

SiameseXML Code for SiameseXML: Siamese networks meet extreme classifiers with 100M labels Best Practices for features creation Adding sub-words on to

Extreme Classification 35 Nov 06, 2022
Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements Our implementation used for the MICCAI 2021 FLARE C

Franz Thaler 3 Sep 27, 2022
Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.

AI Choreographer: Music Conditioned 3D Dance Generation with AIST++ [ICCV-2021]. Overview This package contains the model implementation and training

Google Research 365 Dec 30, 2022
PyTorch implementation of the Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning This is the official PyTorch implementation of the ContrastiveCrop paper: @artic

249 Dec 28, 2022
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Yue Zhao 6.6k Jan 03, 2023
Make your own game in a font!

Project structure. Included is a suite of tools to create font games. Tutorial: For a quick tutorial about how to make your own game go here For devel

Michael Mulet 125 Dec 04, 2022
Optimizing synthesizer parameters using gradient approximation

Optimizing synthesizer parameters using gradient approximation NASH 2021 Hackathon! These are some experiments I conducted during NASH 2021, the Neura

Jordie Shier 10 Feb 10, 2022
Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR, 2019)

Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR 2019) To make better use of given limited labels, we propo

126 Sep 13, 2022
A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.

NeRF-pytorch NeRF (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are

Yen-Chen Lin 3.2k Jan 08, 2023
Kernel Point Convolutions

Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit

Hugues THOMAS 584 Jan 07, 2023
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022; Official code

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 803 Dec 28, 2022