Visualizer using audio and semantic analysis to explore BigGAN (Brock et al., 2018) latent space.

Overview

BigGAN Audio Visualizer

Description

This visualizer explores BigGAN (Brock et al., 2018) latent space by using pitch/tempo of an audio file to generate and interpolate between noise/class vector inputs to the model. Classes are chosen manually or optionally using semantic similarity on BERT encodings of a lyrics corpus.

Usage:

usage: visualize.py [-h] -s SONG [--resolution {128,256,512}] [-d DURATION]
               [-ps [200-295]] [-ts [0.05-0.8]]
               [--classes CLASSES [CLASSES ...]] [-n NUM_CLASSES]
               [--jitter [0-1]] [--frame_length i*2^6] [--truncation [0.1-1]]
               [--smooth_factor [10-30]] [--batch_size BATCH_SIZE]
               [-o OUTPUT_FILE] [--use_last_vectors] [--use_last_classes]
               [-l LYRICS]

Arguments

short long default range help
-h --help show this help message and exit
-s --song input/romantic.mp3 path to input audio file
--resolution 512 {128,256,512} output video resolution
-d --duration None output video duration
-ps --pitch_sensitivity 220 [200-295] controls the sensitivity of the class vector to changes in pitch
-ts --tempo_sensitivity 0.25 [0.05-0.8] controls the sensitivity of the noise vector to changes in volume and tempo
--classes None manually specify [--num_classes] ImageNet classes
-n --num_classes 12 number of unique classes to use
--jitter 0.5 [0-1] controls jitter of the noise vector to reduce repitition
--frame_length 512 i*2^6 number of audio frames to video frames in the output
--truncation 1 [0.1-1] BigGAN truncation parameter controls complexity of structure within frames
--smooth_factor 20 [10-30] controls interpolation between class vectors to smooth rapid flucations
--batch_size 30 BigGAN batch_size
-o --output_file name of output file stored in output/, defaults to [--song] path base_name
--use_last_vectors False set flag to use previous saved class/noise vectors
--use_last_classes False set flag to use previous classes
-l --lyrics None path to lyrics file; setting [--lyrics LYRICS] computes classes by semantic similarity under BERT encodings
Owner
Rush Kapoor
UC Berkeley CS Student with experience in full-stack web development and a keen interest in efficient, interpretable ML.
Rush Kapoor
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi

Robotics and Perception Group 71 Dec 12, 2022
Official code of CVPR 2021's PLOP: Learning without Forgetting for Continual Semantic Segmentation

PLOP: Learning without Forgetting for Continual Semantic Segmentation This repository contains all of our code. It is a modified version of Cermelli e

Arthur Douillard 116 Dec 14, 2022
This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

1 Oct 25, 2021
Official Repository for the paper "Improving Baselines in the Wild".

iWildCam and FMoW baselines (WILDS) This repository was originally forked from the official repository of WILDS datasets (commit 7e103ed) For general

Kazuki Irie 3 Nov 24, 2022
TDmatch is a Python library developed to perform matching tasks in three categories:

TDmatch TDmatch is a Python library developed to perform matching tasks in three categories: Text to Data which matches tuples of a table to text docu

Naser Ahmadi 5 Aug 11, 2022
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'

Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap

0 Apr 20, 2022
Code for the paper "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021)

MASTER-PyTorch PyTorch reimplementation of "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021). This projec

Wenwen Yu 255 Dec 29, 2022
MegEngine implementation of YOLOX

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

旷视天元 MegEngine 77 Nov 22, 2022
This is a collection of our NAS and Vision Transformer work.

This is a collection of our NAS and Vision Transformer work.

Microsoft 828 Dec 28, 2022
CRF-RNN for Semantic Image Segmentation - PyTorch version

This repository contains the official PyTorch implementation of the "CRF-RNN" semantic image segmentation method, published in the ICCV 2015

Sadeep Jayasumana 170 Dec 13, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 0 Dec 15, 2022
The official TensorFlow implementation of the paper Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Action Transformer A Self-Attention Model for Short-Time Human Action Recognition This repository contains the official TensorFlow implementation of t

PIC4SeRCentre 20 Jan 03, 2023
A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)

MMF is a modular framework for vision and language multimodal research from Facebook AI Research. MMF contains reference implementations of state-of-t

Facebook Research 5.1k Jan 04, 2023
Sematic-Segmantation - Semantic Segmentation on MIT ADE20K dataset in PyTorch

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch impleme

Berat Eren Terzioğlu 4 Mar 22, 2022
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

RAVE: Realtime Audio Variational autoEncoder Official implementation of RAVE: A variational autoencoder for fast and high-quality neural audio synthes

ACIDS 587 Jan 01, 2023
Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".

Shaping Visual Representations with Attributes for Few-Shot Learning This code implements the Shaping Visual Representations with Attributes for Few-S

chx_nju 9 Sep 01, 2022
Tiny Object Detection in Aerial Images.

AI-TOD AI-TOD is a dataset for tiny object detection in aerial images. [Paper] [Dataset] Description AI-TOD comes with 700,621 object instances for ei

jwwangchn 116 Dec 30, 2022
Chainer Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

fcn - Fully Convolutional Networks Chainer implementation of Fully Convolutional Networks. Installation pip install fcn Inference Inference is done as

Kentaro Wada 218 Oct 27, 2022