Artifacts for paper "MMO: Meta Multi-Objectivization for Software Configuration Tuning"

Related tags

Deep Learningmmo
Overview

MMO: Meta Multi-Objectivization for Software Configuration Tuning

This repository contains the data and code for the following paper that is currently submitting for publication:

Tao Chen and Miqing Li. MMO: Meta Multi-Objectivization for Software Configuration Tuning.

Introduction

In software configuration tuning, different optimizers have been designed to optimize a single performance objective (e.g.,minimizing latency), yet there is still little success in preventing (or mitigating) the search from being trapped in local optima — a hard nut to crack due to the complex configuration landscape and expensive measurement. To tackle this challenge, in this paper, we take a different perspective. Instead of focusing on improving the optimizer, we work on the level of optimization model and propose a meta multi-objectivization (MMO) model that considers an auxiliary performance objective (e.g., throughput in addition to latency). What makes this model unique is that we do not optimize the auxiliary performance objective, but rather use it to make similarly-performing while different configurations less comparable (i.e. Pareto nondominated to each other), thus preventing the search from being trapped in local optima. Importantly, we show how to effectively use the MMO model without worrying about its weight — the only yet highly sensitive parameter that can determine its effectiveness. This is achieved by designing a new normalization method that allows an optimizer to adaptively find the right objective bounds when guiding the tuning. Experiments on 22 cases from 11 real-world software systems/environments confirm that our MMO model with the new normalization performs better than its state-of-the-art single-objective counterparts on 18 out of 22 cases while achieving up to 2.09x speedup. For 15 cases, the new normalization also enables the MMO model to outperform the instance when using it with the normalization proposed in our prior FSE work under pre-tuned best weights, saving a great amount of resources which would be otherwise necessary to find a good weight. We also demonstrate that the MMO model with the new normalization can consolidate FLASH, a recent model-based tuning tool, on 15 out of 22 cases with 1.22x speedup in general.

Data Result

The dataset of this work can be accessed via the Zenodo link here. In particular, the zip file contains all the raw data as reported in the paper; most of the structures are self-explained but we wish to highlight the following:

  • The data under the folder 1.0-0.0 and 0.0-1.0 are for the single-objective optimizers. The former uses O1 as the target performance objective while the latter uses O2 as the target. The data under other folders named by the subject systems are for the MMO and PMO. The result under the weight folder 1.0 are for MMO while all other folders represent different weight values, containing the data for MMO-FSE.

  • For those data of MMO, MMO-FSE, and PMO, the folder 0 and 1 denote using uses O1 and O2 as the target performance objective, respectively.

  • In the lowest-level folder where the data is stored (i.e., the sas folder), SolutionSet.rtf contains the results over all repeated runs; SolutionSetWithMeasurement.rtf records the results over different numbers of measurements.

Souce Code

The code folder contains all the information about the source code, as well as an executable jar file in the executable folder .

Running the Experiments

To run the experiments, one can download the mmo-experiments.jar from the aforementioned repository (under the executable folder). Since the artifacts were written in Java, we assume that the JDK/JRE has already been installed. Next, one can run the code using java -jar mmo-experiments.jar [subject] [runs], where [subject] and [runs] denote the subject software system and the number of repeated run (this is an integer and 50 is the default if it is not specified), respectively. The keyword for the systems/environments used in the paper are:

  • trimesh
  • x264
  • storm-wc
  • storm-rs
  • dnn-sa
  • dnn-adiac
  • mariadb
  • vp9
  • mongodb
  • lrzip
  • llvm

For example, running java -jar mmo-experiments.jar trimesh would execute experiments on the trimesh software for 50 repeated runs.

For each software system, the experiment consists of the runs for MMO, MMO-FSE with all weight values, PMO and the four state-of-the-art single-objective optimizers, as well as the FLASH and FLASH_MMO. All the outputs would be stored in the results folder at the same directory as the executable jar file.

All the measurement data of the subject configurable systems have been placed inside the mmo-experiments.jar.

Plotting points that lie on the intersection of the given curves using gradient descent.

Plotting intersection of curves using gradient descent Webapp Link --- What's the app about Why this app Plotting functions and their intersection. A

Divakar Verma 2 Jan 09, 2022
Commonsense Ability Tests

CATS Commonsense Ability Tests Dataset and script for paper Evaluating Commonsense in Pre-trained Language Models Use making_sense.py to run the exper

XUHUI ZHOU 28 Oct 19, 2022
Medical image analysis framework merging ANTsPy and deep learning

ANTsPyNet A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Bas

Advanced Normalization Tools Ecosystem 118 Dec 24, 2022
NeROIC: Neural Object Capture and Rendering from Online Image Collections

NeROIC: Neural Object Capture and Rendering from Online Image Collections This repository is for the source code for the paper NeROIC: Neural Object C

Snap Research 647 Dec 27, 2022
Code for the Lovász-Softmax loss (CVPR 2018)

The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks Maxim Berman, Amal Ranne

Maxim Berman 1.3k Jan 04, 2023
Cognate Detection Repository

Cognate Detection Repository Details This repository contains the data for two publications: Challenge Dataset of Cognates and False Friend Pairs from

Diptesh Kanojia 1 Apr 26, 2022
Code and data for paper "Deep Photo Style Transfer"

deep-photo-styletransfer Code and data for paper "Deep Photo Style Transfer" Disclaimer This software is published for academic and non-commercial use

Fujun Luan 9.9k Dec 29, 2022
A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes.

OMNI A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes. Why? When I finished my Kubernetes cluster using a few Raspber

Matias Godoy 148 Dec 29, 2022
Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition (NeurIPS 2019)

MLCR This is the source code for paper Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition. Xuesong Niu, Hu Han, Shiguang

Edson-Niu 60 Nov 29, 2022
Open source Python module for computer vision

About PCV PCV is a pure Python library for computer vision based on the book "Programming Computer Vision with Python" by Jan Erik Solem. More details

Jan Erik Solem 1.9k Jan 06, 2023
Simulation code and tutorial for BBHnet training data

Simulation Dataset for BBHnet NOTE: OLD README, UPDATE IN PROGRESS We generate simulation dataset to train BBHnet, our deep learning framework for det

0 May 31, 2022
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal

A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal, but extensible training loop which is flexible enough to handle the majority of use cases,

Chris Hughes 110 Dec 23, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022
SPRING is a seq2seq model for Text-to-AMR and AMR-to-Text (AAAI2021).

SPRING This is the repo for SPRING (Symmetric ParsIng aNd Generation), a novel approach to semantic parsing and generation, presented at AAAI 2021. Wi

Sapienza NLP group 98 Dec 21, 2022
Code for Multimodal Neural SLAM for Interactive Instruction Following

Code for Multimodal Neural SLAM for Interactive Instruction Following Code structure The code is adapted from E.T. and most training as well as data p

7 Dec 07, 2022
The repository contain code for building compiler using puthon.

Building Compiler This is a python implementation of JamieBuild's "Super Tiny Compiler" Overview JamieBuilds developed a wonderfully educative compile

Shyam Das Shrestha 1 Nov 21, 2021
code release for USENIX'22 paper `On the Security Risks of AutoML`

This project is a minimized runnable project cut from trojanzoo, which contains more datasets, models, attacks and defenses. This repo will not be mai

Ren Pang 5 Apr 19, 2022
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)

Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].

Christos Tzelepis 100 Dec 06, 2022
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022
Implement A3C for Mujoco gym envs

pytorch-a3c-mujoco Disclaimer: my implementation right now is unstable (you ca refer to the learning curve below), I'm not sure if it's my problems. A

Andrew 70 Dec 12, 2022