Artifacts for paper "MMO: Meta Multi-Objectivization for Software Configuration Tuning"

Related tags

Deep Learningmmo
Overview

MMO: Meta Multi-Objectivization for Software Configuration Tuning

This repository contains the data and code for the following paper that is currently submitting for publication:

Tao Chen and Miqing Li. MMO: Meta Multi-Objectivization for Software Configuration Tuning.

Introduction

In software configuration tuning, different optimizers have been designed to optimize a single performance objective (e.g.,minimizing latency), yet there is still little success in preventing (or mitigating) the search from being trapped in local optima — a hard nut to crack due to the complex configuration landscape and expensive measurement. To tackle this challenge, in this paper, we take a different perspective. Instead of focusing on improving the optimizer, we work on the level of optimization model and propose a meta multi-objectivization (MMO) model that considers an auxiliary performance objective (e.g., throughput in addition to latency). What makes this model unique is that we do not optimize the auxiliary performance objective, but rather use it to make similarly-performing while different configurations less comparable (i.e. Pareto nondominated to each other), thus preventing the search from being trapped in local optima. Importantly, we show how to effectively use the MMO model without worrying about its weight — the only yet highly sensitive parameter that can determine its effectiveness. This is achieved by designing a new normalization method that allows an optimizer to adaptively find the right objective bounds when guiding the tuning. Experiments on 22 cases from 11 real-world software systems/environments confirm that our MMO model with the new normalization performs better than its state-of-the-art single-objective counterparts on 18 out of 22 cases while achieving up to 2.09x speedup. For 15 cases, the new normalization also enables the MMO model to outperform the instance when using it with the normalization proposed in our prior FSE work under pre-tuned best weights, saving a great amount of resources which would be otherwise necessary to find a good weight. We also demonstrate that the MMO model with the new normalization can consolidate FLASH, a recent model-based tuning tool, on 15 out of 22 cases with 1.22x speedup in general.

Data Result

The dataset of this work can be accessed via the Zenodo link here. In particular, the zip file contains all the raw data as reported in the paper; most of the structures are self-explained but we wish to highlight the following:

  • The data under the folder 1.0-0.0 and 0.0-1.0 are for the single-objective optimizers. The former uses O1 as the target performance objective while the latter uses O2 as the target. The data under other folders named by the subject systems are for the MMO and PMO. The result under the weight folder 1.0 are for MMO while all other folders represent different weight values, containing the data for MMO-FSE.

  • For those data of MMO, MMO-FSE, and PMO, the folder 0 and 1 denote using uses O1 and O2 as the target performance objective, respectively.

  • In the lowest-level folder where the data is stored (i.e., the sas folder), SolutionSet.rtf contains the results over all repeated runs; SolutionSetWithMeasurement.rtf records the results over different numbers of measurements.

Souce Code

The code folder contains all the information about the source code, as well as an executable jar file in the executable folder .

Running the Experiments

To run the experiments, one can download the mmo-experiments.jar from the aforementioned repository (under the executable folder). Since the artifacts were written in Java, we assume that the JDK/JRE has already been installed. Next, one can run the code using java -jar mmo-experiments.jar [subject] [runs], where [subject] and [runs] denote the subject software system and the number of repeated run (this is an integer and 50 is the default if it is not specified), respectively. The keyword for the systems/environments used in the paper are:

  • trimesh
  • x264
  • storm-wc
  • storm-rs
  • dnn-sa
  • dnn-adiac
  • mariadb
  • vp9
  • mongodb
  • lrzip
  • llvm

For example, running java -jar mmo-experiments.jar trimesh would execute experiments on the trimesh software for 50 repeated runs.

For each software system, the experiment consists of the runs for MMO, MMO-FSE with all weight values, PMO and the four state-of-the-art single-objective optimizers, as well as the FLASH and FLASH_MMO. All the outputs would be stored in the results folder at the same directory as the executable jar file.

All the measurement data of the subject configurable systems have been placed inside the mmo-experiments.jar.

Simulating an AI playing 2048 using the Expectimax algorithm

2048-expectimax Simulating an AI playing 2048 using the Expectimax algorithm The base game engine uses code from here. The AI player is modeled as a m

Subha Ramesh 2 Jan 31, 2022
[CVPR 2021] "The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models" Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang

The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models Codes for this paper The Lottery Tickets Hypo

VITA 59 Dec 28, 2022
A Comprehensive Study on Learning-Based PE Malware Family Classification Methods

A Comprehensive Study on Learning-Based PE Malware Family Classification Methods Datasets Because of copyright issues, both the MalwareBazaar dataset

8 Oct 21, 2022
Apache Spark - A unified analytics engine for large-scale data processing

Apache Spark Spark is a unified analytics engine for large-scale data processing. It provides high-level APIs in Scala, Java, Python, and R, and an op

The Apache Software Foundation 34.7k Jan 04, 2023
COD-Rank-Localize-and-Segment (CVPR2021)

COD-Rank-Localize-and-Segment (CVPR2021) Simultaneously Localize, Segment and Rank the Camouflaged Objects Full camouflage fixation training dataset i

JingZhang 52 Dec 20, 2022
SurfEmb (CVPR 2022) - SurfEmb: Dense and Continuous Correspondence Distributions

SurfEmb SurfEmb: Dense and Continuous Correspondence Distributions for Object Pose Estimation with Learnt Surface Embeddings Rasmus Laurvig Haugard, A

Rasmus Haugaard 56 Nov 19, 2022
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
An official implementation of "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation" (CVPR 2021) in PyTorch.

BANA This is the implementation of the paper "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation". For more inf

CV Lab @ Yonsei University 59 Dec 12, 2022
NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language NaturalProofs: Mathematical Theorem Proving in Natural Language Sean Welleck, Jiacheng

Sean Welleck 83 Jan 05, 2023
Segcache: a memory-efficient and scalable in-memory key-value cache for small objects

Segcache: a memory-efficient and scalable in-memory key-value cache for small objects This repo contains the code of Segcache described in the followi

TheSys Group @ CMU CS 78 Jan 07, 2023
Very deep VAEs in JAX/Flax

Very Deep VAEs in JAX/Flax Implementation of the experiments in the paper Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on I

Jamie Townsend 42 Dec 12, 2022
Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec

Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec This repo

Building and Urban Data Science (BUDS) Group 5 Dec 02, 2022
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring Code Summary aggregate.py: this script aggr

1 Dec 28, 2021
Official Repository of NeurIPS2021 paper: PTR

PTR: A Benchmark for Part-based Conceptual, Relational, and Physical Reasoning Figure 1. Dataset Overview. Introduction A critical aspect of human vis

Yining Hong 32 Jun 02, 2022
Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Oral)

CMT Code for paper Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Best Paper Award) [Paper] [Site] Directory Struc

Zhaokai Wang 198 Dec 27, 2022
Time Delayed NN implemented in pytorch

Pytorch Time Delayed NN Time Delayed NN implemented in PyTorch. Usage kernels = [(1, 25), (2, 50), (3, 75), (4, 100), (5, 125), (6, 150)] tdnn = TDNN

Daniil Gavrilov 79 Aug 04, 2022
Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral)

DSA^2 F: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral) This repo is the official imp

如今我已剑指天涯 46 Dec 21, 2022
Code for ECIR'20 paper Diagnosing BERT with Retrieval Heuristics

Bert Axioms This is the repository with the code for the Paper Diagnosing BERT with Retrieval Heuristics Required Data In order to run this code, you

Arthur Câmara 5 Jan 21, 2022
An Unsupervised Graph-based Toolbox for Fraud Detection

An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s

SafeGraph 99 Dec 11, 2022