Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition (NeurIPS 2019)

Related tags

Deep LearningMLCR
Overview

MLCR

This is the source code for paper

Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition.
Xuesong Niu, Hu Han, Shiguang Shan, Xilin Chen
NeurIPS 2019

Environment requirest

This code is based on Python 2.7, Pytorch 0.4.1 and CUDA 8.0.

Database and testing protocol

For EmotioNet database, please refer to this link. Please note that we are only able to download 20,722 manually-labeled face images. We randomly choose 15,000 images as the labeled training set, and the other manually-labeled images are used for testing. We perform the testing three times and report the average performance. Please refer to our paper for more information.

For BP4D database, please refer to this link. We conduct a subject-exclusive 3-fold cross-validation. The unlabeled training images used for experiments on BP4D are taken from the EmotioNet database.

Pre-processing

All the faces are detected and aligned using the SeetaFace Engineer.

Training

In order to train your model, you need to write your own dataloader. The image transforms used for training is in the 'main.py'. Losses used for training is in the loss file and the usage is in the 'main.py'. More details for training can be found in our paper.

Testing

We provided a model trained on EmotioNet for one testing. You can download it from Google Drive or Baidu Drive, and test it using 'main.py'. The results of this model may be silghtly different from the results in our paper because we reported the average performance of the three testings. You can use it as a pre-trained model for your task.

Contact

If you have any problems or any further interesting ideas with this project, feel free to contact me ([email protected]).

If you use this work, please cite our paper

@inproceedings{niu2019multi,
title={Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition.},
author={Niu, Xuesong and Han, Hu and Shan, Shiguang and Chen, Xilin},
booktitle= {Advances in Neural Information Processing Systems (NeurIPS)},
year={2019}
}
Owner
Edson-Niu
Edson-Niu
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

CSAW-M This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for tr

Yue Liu 7 Oct 11, 2022
a simple, efficient, and intuitive text editor

Oxygen beta a simple, efficient, and intuitive text editor Overview oxygen is a simple, efficient, and intuitive text editor designed as more featured

Aarush Gupta 1 Feb 23, 2022
MOpt-AFL provided by the paper "MOPT: Optimized Mutation Scheduling for Fuzzers"

MOpt-AFL 1. Description MOpt-AFL is a AFL-based fuzzer that utilizes a customized Particle Swarm Optimization (PSO) algorithm to find the optimal sele

172 Dec 18, 2022
Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs

Context-Aware-Healthcare Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs Download

LuChang 9 Dec 26, 2022
AoT is a system for automatically generating off-target test harness by using build information.

AoT: Auto off-Target Automatically generating off-target test harness by using build information. Brought to you by the Mobile Security Team at Samsun

Samsung 10 Oct 19, 2022
We have made you a wrapper you can't refuse

We have made you a wrapper you can't refuse We have a vibrant community of developers helping each other in our Telegram group. Join us! Stay tuned fo

20.6k Jan 09, 2023
Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)

Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)- Emirhan BULUT

Emirhan BULUT 102 Nov 18, 2022
Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Getting Started This repository contains the code used for the following publications: Probabilistic Guarantees for Safe Deep Reinforcement Learning (

Edoardo Bacci 5 Aug 31, 2022
Official Implementation of SWAD (NeurIPS 2021)

SWAD: Domain Generalization by Seeking Flat Minima (NeurIPS'21) Official PyTorch implementation of SWAD: Domain Generalization by Seeking Flat Minima.

Junbum Cha 97 Dec 20, 2022
AttentionGAN for Unpaired Image-to-Image Translation & Multi-Domain Image-to-Image Translation

AttentionGAN-v2 for Unpaired Image-to-Image Translation AttentionGAN-v2 Framework The proposed generator learns both foreground and background attenti

Hao Tang 530 Dec 27, 2022
This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murder rates etc.

Gun-Laws-Classifier This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murde

Awais Saleem 1 Jan 20, 2022
This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios"

TinyWeaklyIsolationForest This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised a

2 Mar 21, 2022
This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation)

This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation) Usage example python dynamic_inverted_softmax.py --sims_train

36 Dec 29, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
Multi-Person Extreme Motion Prediction

Multi-Person Extreme Motion Prediction Implementation for paper Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, Francesc Moreno-Noguer, Multi-Person Extre

GUO-W 38 Nov 15, 2022
Spatial Single-Cell Analysis Toolkit

Single-Cell Image Analysis Package Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spa

Laboratory of Systems Pharmacology @ Harvard 30 Nov 08, 2022
Implementation of "Bidirectional Projection Network for Cross Dimension Scene Understanding" CVPR 2021 (Oral)

Bidirectional Projection Network for Cross Dimension Scene Understanding CVPR 2021 (Oral) [ Project Webpage ] [ arXiv ] [ Video ] Existing segmentatio

Hu Wenbo 135 Dec 26, 2022
Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》

Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data. This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition

Zhong Yaoyao 68 Jan 07, 2023
Video-face-extractor - Video face extractor with Python

Python face extractor Setup Create the srcvideos and faces directories Put your

2 Feb 03, 2022
Creating predictive checklists from data using integer programming.

Learning Optimal Predictive Checklists A Python package to learn simple predictive checklists from data subject to customizable constraints. For more

Healthy ML 5 Apr 19, 2022