The project page of paper: Architecture disentanglement for deep neural networks [ICCV 2021, oral]

Related tags

Deep LearningNAD
Overview

This is the project page for the paper:

Architecture Disentanglement for Deep Neural Networks,
Jie Hu, Liujuan Cao, Tong Tong, Ye Qixiang, ShengChuan Zhang, Ke Li, Feiyue Huang, Ling Shao, Rongrong Ji

Updates

  • (2021.11.18) The project page for NAD is avaliable.

Pretrained Models For Place

ImageNet pretrained model can be downloaded online. As for the place dataset, we trained the four networks on place365 dataset. The pretrained model can be download at google driver, they should be placed at the folder NAD/pretrain_model/

Requirements

  • Python=3.7
  • PyTorch=1.7.1, torchvision=0.8.2, cudatoolkit=10.1

Steps (vgg16 and imagenet for example)

  1. Install Anaconda, create a virtual environment and install the requirements above. And then
git clone https://github.com/hujiecpp/NAD
  1. Download ImageNet dataset and Place365 dataset and then modify the NAD/tools/config.py. As for the Place365 dataset, use 'NAD/tools/make_dataset.py' to convert it to a suitable format.

  2. Find the path for all categories at network

CUDA_VISIBLE_DEVICES=0 python findpath.py --net vgg16 --dataset imagenet --beta 4.5
  1. Test one image using its path
CUDA_VISIBLE_DEVICES=0 python cam_1x1.py --model vgg16 --dataset imagenet --epoch 20 --mask_rate 0.05
  1. Generate 2x2 images randomly and test path hit rate for each layer
CUDA_VISIBLE_DEVICES=0 python cam_2x2.py --model vgg16 --dataset imagenet --epoch 20 --mask_rate 0.05
  1. Calculate the top3 substructure similarity for each class and compare it with the result of top3 classified by the classification network
CUDA_VISIBLE_DEVICES=0 python similarSubArch.py --model vgg16 --dataset imagenet --epoch 20

Citation

If our paper helps your research, please cite it in your publications:

@inproceedings{hu2021architecture,
  title={Architecture disentanglement for deep neural networks},
  author={Hu, Jie and Cao, Liujuan and Tong, Tong and Ye, Qixiang and Zhang, Shengchuan and Li, Ke and Huang, Feiyue and Shao, Ling and Ji, Rongrong},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={672--681},
  year={2021}
}
Owner
Jie Hu
Phd Student, Xiamen University.
Jie Hu
Gradient representations in ReLU networks as similarity functions

Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our

1 Oct 08, 2021
Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Google Cloud Platform 792 Dec 28, 2022
YOLOX-CondInst - Implement CondInst which is a instances segmentation method on YOLOX

YOLOX CondInst -- YOLOX 实例分割 前言 本项目是自己学习实例分割时,复现的代码. 通过自己编程,让自己对实例分割有更进一步的了解。 若想

DDGRCF 16 Nov 18, 2022
FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset (CVPR2022)

FaceVerse FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset Lizhen Wang, Zhiyuan Chen, Tao Yu, Chenguang

Lizhen Wang 219 Dec 28, 2022
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 111 Dec 18, 2022
Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2

CoaDTI Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2 Abstract Environment The test was conducted i

Layne_Huang 7 Nov 14, 2022
An official TensorFlow implementation of “CLCC: Contrastive Learning for Color Constancy” accepted at CVPR 2021.

CLCC: Contrastive Learning for Color Constancy (CVPR 2021) Yi-Chen Lo*, Chia-Che Chang*, Hsuan-Chao Chiu, Yu-Hao Huang, Chia-Ping Chen, Yu-Lin Chang,

Yi-Chen (Howard) Lo 58 Dec 17, 2022
⚡️Optimizing einsum functions in NumPy, Tensorflow, Dask, and more with contraction order optimization.

Optimized Einsum Optimized Einsum: A tensor contraction order optimizer Optimized einsum can significantly reduce the overall execution time of einsum

Daniel Smith 653 Dec 30, 2022
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja

742 Jan 04, 2023
Code release for NeRF (Neural Radiance Fields)

NeRF: Neural Radiance Fields Project Page | Video | Paper | Data Tensorflow implementation of optimizing a neural representation for a single scene an

6.5k Jan 01, 2023
Multi-Output Gaussian Process Toolkit

Multi-Output Gaussian Process Toolkit Paper - API Documentation - Tutorials & Examples The Multi-Output Gaussian Process Toolkit is a Python toolkit f

GAMES 113 Nov 25, 2022
Data Consistency for Magnetic Resonance Imaging

Data Consistency for Magnetic Resonance Imaging Data Consistency (DC) is crucial for generalization in multi-modal MRI data and robustness in detectin

Dimitris Karkalousos 19 Dec 12, 2022
automatic color-grading

color-matcher Description color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, painting

hahnec 168 Jan 05, 2023
Rax is a Learning-to-Rank library written in JAX

🦖 Rax: Composable Learning to Rank using JAX Rax is a Learning-to-Rank library written in JAX. Rax provides off-the-shelf implementations of ranking

Google 247 Dec 27, 2022
KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

80 Dec 27, 2022
Apache Spark - A unified analytics engine for large-scale data processing

Apache Spark Spark is a unified analytics engine for large-scale data processing. It provides high-level APIs in Scala, Java, Python, and R, and an op

The Apache Software Foundation 34.7k Jan 04, 2023
Differential fuzzing for the masses!

NEZHA NEZHA is an efficient and domain-independent differential fuzzer developed at Columbia University. NEZHA exploits the behavioral asymmetries bet

147 Dec 05, 2022
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
PyTorch Implementation of SSTNs for hyperspectral image classifications from the IEEE T-GRS paper "Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A FAS Framework."

PyTorch Implementation of SSTN for Hyperspectral Image Classification Paper links: SSTN published on IEEE T-GRS. Also, you can directly find the imple

Zilong Zhong 54 Dec 19, 2022
Python package for Bayesian Machine Learning with scikit-learn API

Python package for Bayesian Machine Learning with scikit-learn API Installing & Upgrading package pip install https://github.com/AmazaspShumik/sklearn

Amazasp Shaumyan 482 Jan 04, 2023