Code release for NeRF (Neural Radiance Fields)

Overview

NeRF: Neural Radiance Fields

Project Page | Video | Paper | Data

Open Tiny-NeRF in Colab
Tensorflow implementation of optimizing a neural representation for a single scene and rendering new views.

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
Ben Mildenhall*1, Pratul P. Srinivasan*1, Matthew Tancik*1, Jonathan T. Barron2, Ravi Ramamoorthi3, Ren Ng1
1UC Berkeley, 2Google Research, 3UC San Diego
*denotes equal contribution
in ECCV 2020 (Oral Presentation, Best Paper Honorable Mention)

TL;DR quickstart

To setup a conda environment, download example training data, begin the training process, and launch Tensorboard:

conda env create -f environment.yml
conda activate nerf
bash download_example_data.sh
python run_nerf.py --config config_fern.txt
tensorboard --logdir=logs/summaries --port=6006

If everything works without errors, you can now go to localhost:6006 in your browser and watch the "Fern" scene train.

Setup

Python 3 dependencies:

  • Tensorflow 1.15
  • matplotlib
  • numpy
  • imageio
  • configargparse

The LLFF data loader requires ImageMagick.

We provide a conda environment setup file including all of the above dependencies. Create the conda environment nerf by running:

conda env create -f environment.yml

You will also need the LLFF code (and COLMAP) set up to compute poses if you want to run on your own real data.

What is a NeRF?

A neural radiance field is a simple fully connected network (weights are ~5MB) trained to reproduce input views of a single scene using a rendering loss. The network directly maps from spatial location and viewing direction (5D input) to color and opacity (4D output), acting as the "volume" so we can use volume rendering to differentiably render new views.

Optimizing a NeRF takes between a few hours and a day or two (depending on resolution) and only requires a single GPU. Rendering an image from an optimized NeRF takes somewhere between less than a second and ~30 seconds, again depending on resolution.

Running code

Here we show how to run our code on two example scenes. You can download the rest of the synthetic and real data used in the paper here.

Optimizing a NeRF

Run

bash download_example_data.sh

to get the our synthetic Lego dataset and the LLFF Fern dataset.

To optimize a low-res Fern NeRF:

python run_nerf.py --config config_fern.txt

After 200k iterations (about 15 hours), you should get a video like this at logs/fern_test/fern_test_spiral_200000_rgb.mp4:

ferngif

To optimize a low-res Lego NeRF:

python run_nerf.py --config config_lego.txt

After 200k iterations, you should get a video like this:

legogif

Rendering a NeRF

Run

bash download_example_weights.sh

to get a pretrained high-res NeRF for the Fern dataset. Now you can use render_demo.ipynb to render new views.

Replicating the paper results

The example config files run at lower resolutions than the quantitative/qualitative results in the paper and video. To replicate the results from the paper, start with the config files in paper_configs/. Our synthetic Blender data and LLFF scenes are hosted here and the DeepVoxels data is hosted by Vincent Sitzmann here.

Extracting geometry from a NeRF

Check out extract_mesh.ipynb for an example of running marching cubes to extract a triangle mesh from a trained NeRF network. You'll need the install the PyMCubes package for marching cubes plus the trimesh and pyrender packages if you want to render the mesh inside the notebook:

pip install trimesh pyrender PyMCubes

Generating poses for your own scenes

Don't have poses?

We recommend using the imgs2poses.py script from the LLFF code. Then you can pass the base scene directory into our code using --datadir <myscene> along with -dataset_type llff. You can take a look at the config_fern.txt config file for example settings to use for a forward facing scene. For a spherically captured 360 scene, we recomment adding the --no_ndc --spherify --lindisp flags.

Already have poses!

In run_nerf.py and all other code, we use the same pose coordinate system as in OpenGL: the local camera coordinate system of an image is defined in a way that the X axis points to the right, the Y axis upwards, and the Z axis backwards as seen from the image.

Poses are stored as 3x4 numpy arrays that represent camera-to-world transformation matrices. The other data you will need is simple pinhole camera intrinsics (hwf = [height, width, focal length]) and near/far scene bounds. Take a look at our data loading code to see more.

Citation

@inproceedings{mildenhall2020nerf,
  title={NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis},
  author={Ben Mildenhall and Pratul P. Srinivasan and Matthew Tancik and Jonathan T. Barron and Ravi Ramamoorthi and Ren Ng},
  year={2020},
  booktitle={ECCV},
}
Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
This project implements "virtual speed" from heart rate monito

ANT+ Virtual Stride Based Speed and Distance Monitor Overview This project imple

2 May 20, 2022
Our VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks.

VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks. VMAgent is constructed based on one month r

56 Dec 12, 2022
Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By

73 Jan 01, 2023
A python script to lookup Passport Index Dataset

visa-cli A python script to lookup Passport Index Dataset Installation pip install visa-cli Usage usage: visa-cli [-h] [-d DESTINATION_COUNTRY] [-f]

rand-net 16 Oct 18, 2022
Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.

DFN:Distributed Feedback Network for Single-Image Deraining Abstract Recently, deep convolutional neural networks have achieved great success for sing

6 Nov 05, 2022
Sudoku solver - A sudoku solver with python

sudoku_solver A sudoku solver What is Sudoku? Sudoku (Japanese: 数独, romanized: s

Sikai Lu 0 May 22, 2022
Tutorial for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop

Workshop Advantech Jetson Nano This tutorial has been designed for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop in collaboration with Adva

Edge Impulse 18 Nov 22, 2022
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

HamasKhan 3 Jul 08, 2022
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 799 Dec 28, 2022
A PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detection.

R-YOLOv4 This is a PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detect

94 Dec 03, 2022
Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image

CenterPose Overview This repository is the official implementation of the paper "Single-stage Keypoint-based Category-level Object Pose Estimation fro

NVIDIA Research Projects 188 Dec 27, 2022
Auto HMM: Automatic Discrete and Continous HMM including Model selection

Auto HMM: Automatic Discrete and Continous HMM including Model selection

Chess_champion 29 Dec 07, 2022
IDA file loader for UF2, created for the DEFCON 29 hardware badge

UF2 Loader for IDA The DEFCON 29 badge uses the UF2 bootloader, which conveniently allows you to dump and flash the firmware over USB as a mass storag

Kevin Colley 6 Feb 08, 2022
Gesture Volume Control v.2

Gesture volume control v.2 In this project I am going to learn how to use Gesture Control to change the volume of a computer. I first look into hand t

Pavel Dat 23 Dec 26, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

SMPLify-XMC This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright Lic

Lea Müller 83 Dec 14, 2022
Learning to Draw: Emergent Communication through Sketching

Learning to Draw: Emergent Communication through Sketching This is the official code for the paper "Learning to Draw: Emergent Communication through S

19 Jul 22, 2022
Open source person re-identification library in python

Open-ReID Open-ReID is a lightweight library of person re-identification for research purpose. It aims to provide a uniform interface for different da

Tong Xiao 1.3k Jan 01, 2023
Flax is a neural network ecosystem for JAX that is designed for flexibility.

Flax: A neural network library and ecosystem for JAX designed for flexibility Overview | Quick install | What does Flax look like? | Documentation See

Google 3.9k Jan 02, 2023
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023