This repository contains the code for designing risk bounded motion plans for car-like robot using Carla Simulator.

Overview

Nonlinear Risk Bounded Robot Motion Planning

This code simulates the bicycle dynamics of car by steering it on the road by avoiding another static car obstacle in a CARLA simulator. The ego_vehicle has to consider all the system and perception uncertainties to generate a risk-bounded motion plan and execute it with coherent risk assessment. Coherent risk assessment for a nonlinear robot like the car in this simulation is made possible using nonlinear model predictive control (NMPC) based steering law combined with Unscented Kalman filter for state estimation purpose. Finally, distributionally robust chance constraints applied using a temporal logic specifications evaluate the risk of a trajectory before being added to the sequence of trajectories forming a motion plan from the start to the destination.

Click the picture to watch the corresponding youtube video supporting our work

Motion Planning Using Carla Simulator

The code in this repository implements the algorithms and ideas from our following paper:

  1. V. Renganathan, S. Safaoui, A. Kothari, I. Shames, T. Summers, Risk Bounded Nonlinear Robot Motion Planning With Integrated Perception & Control, Submitted to the Special Issue on Risk-aware Autonomous Systems: Theory and Practice, Artificial Intelligence Journal, 2021.

Dependencies

  • Python 3.5+ (tested with 3.7.6)
  • Numpy
  • Scipy
  • Matplotlib
  • Casadi
  • Namedlist
  • Pickle
  • Carla

Installing

You will need the following two items to run the codes. After that there is no other formal package installation procedure; simply download this repository and run the Python files.

  • CARLA SIMULATOR VERSION: 0.9.10
  • UNREAL ENGINE VERSION: 4.24.3

Modules of an autonomy stack

There are two main modules for understanding this whole package

  1. First, a high level motion planner has to run and it will generate a reference trajectory for the car from start to the end
  2. Second, a low level tracking controller will enable the car to track the reference trajectory despite the realized noises.

Procedure to run the code

  1. Run the python code Generate_Monte_Carlo_Noises.py which will generate and load the required noise parameters and data required for simulation into pickle files
  2. Run the python code Run_Path_Planner.py
  3. The code will run for specified number of iterations and produces all required data
  4. Then load the cooresponding pickle file data in file main.py in the line number #488.
  5. Run the main.py file with the Carla executable being open already
  6. The simulation will run in the Carla simulator where the car will track the reference trajectory and results are stored in pickle files
  7. To see the tracking results, run the python file Tracked_Path_Plotter.py

Running Monte-Carlo Simulations

  1. Create a new folder called monte_carlo_results in the same directory where the python file monte_carlo_car.py resides.
  2. Update the trial_num at line #1554 in the file monte_carlo_car.py and run it while the Carla executable is open (It will automatically load the noise realizations corresponding to the trial_num from the pickle files)
  3. After the simulation is over, automatically the results are stored under the folder monte_carlo_results with a specific trial name
  4. Repeat the process by changing trial number in step 2 and run again.
  5. Once the all trials are completed, run the python file monte_carlo_results_plotter.py to plot the monte-carlo simulation results

Variations

  • Instead of Distributionally robust chance constraints, if you would like to have a simple Gaussian Chance Constraints, then change self.DRFlag = False in line 852 in the file DR_RRTStar_Planner.py
  • Choose your own state estimator UKF or EKF by commenting and uncommenting the corresponding estimator in lines 26-27 of file State_Estimator.py

Funding Acknowledgement

This work is partially supported by Defence Science and Technology Group, through agreement MyIP: ID10266 entitled Hierarchical Verification of Autonomy Architectures, the Australian Government, via grant AUSMURIB000001 associated with ONR MURI grant N00014-19-1-2571, and by the United States Air Force Office of Scientific Research under award number FA2386-19-1-4073.

Contributing Authors

  1. Venkatraman Renganathan - UT Dallas
  2. Sleiman Safaoui - UT Dallas
  3. Aadi Kothari - UT Dallas
  4. Benjamin Gravell - UT Dallas
  5. Dr. Iman Shames - Australian National University
  6. Dr. Tyler Summers - UT Dallas

Affiliation

TSummersLab - Control, Optimization & Networks Laboratory (CONLab)

This is a simple plugin for Vim that allows you to use OpenAI Codex.

🤖 Vim Codex An AI plugin that does the work for you. This is a simple plugin for Vim that will allow you to use OpenAI Codex. To use this plugin you

Tom Dörr 195 Dec 28, 2022
Blind Video Temporal Consistency via Deep Video Prior

deep-video-prior (DVP) Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior PyTorch implementation | paper | project web

Chenyang LEI 272 Dec 21, 2022
The AWS Certified SysOps Administrator

The AWS Certified SysOps Administrator – Associate (SOA-C02) exam is intended for system administrators in a cloud operations role who have at least 1 year of hands-on experience with deployment, man

Aiden Pearce 32 Dec 11, 2022
Optimizing synthesizer parameters using gradient approximation

Optimizing synthesizer parameters using gradient approximation NASH 2021 Hackathon! These are some experiments I conducted during NASH 2021, the Neura

Jordie Shier 10 Feb 10, 2022
MaskTrackRCNN for video instance segmentation based on mmdetection

MaskTrackRCNN for video instance segmentation Introduction This repo serves as the official code release of the MaskTrackRCNN model for video instance

411 Jan 05, 2023
A semantic segmentation toolbox based on PyTorch

Introduction vedaseg is an open source semantic segmentation toolbox based on PyTorch. Features Modular Design We decompose the semantic segmentation

407 Dec 15, 2022
Unofficial Implementation of RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019)

RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019) This repository contains python (3.5.2) implementation of

Doyup Lee 222 Dec 21, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance [Video Demo] [Paper] Installation Requirements Python 3.6 PyTorch 1.1.0 Pleas

Jiachen Xu 19 Oct 28, 2022
Code release to accompany paper "Geometry-Aware Gradient Algorithms for Neural Architecture Search."

Geometry-Aware Gradient Algorithms for Neural Architecture Search This repository contains the code required to run the experiments for the DARTS sear

18 May 27, 2022
TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline.

TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline

193 Dec 22, 2022
Flax is a neural network ecosystem for JAX that is designed for flexibility.

Flax: A neural network library and ecosystem for JAX designed for flexibility Overview | Quick install | What does Flax look like? | Documentation See

Google 3.9k Jan 02, 2023
PG2Net: Personalized and Group PreferenceGuided Network for Next Place Prediction

PG2Net PG2Net:Personalized and Group Preference Guided Network for Next Place Prediction Datasets Experiment results on two Foursquare check-in datase

Urban Mobility 5 Dec 20, 2022
A Streamlit component to render ECharts.

Streamlit - ECharts A Streamlit component to display ECharts. Install pip install streamlit-echarts Usage This library provides 2 functions to display

Fanilo Andrianasolo 290 Dec 30, 2022
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
This program will stylize your photos with fast neural style transfer.

Neural Style Transfer (NST) Using TensorFlow Demo TensorFlow TensorFlow is an end-to-end open source platform for machine learning. It has a comprehen

Ismail Boularbah 1 Aug 08, 2022
Official implementation for the paper: "Multi-label Classification with Partial Annotations using Class-aware Selective Loss"

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

42 Jul 25, 2022
Let's Git - Versionsverwaltung & Open Source Hausaufgabe

Let's Git - Versionsverwaltung & Open Source Hausaufgabe Herzlich Willkommen zu dieser Hausaufgabe für unseren MOOC: Let's Git! Wir hoffen, dass Du vi

1 Dec 13, 2021
A program that can analyze videos according to the weights you select

MaskMonitor A program that can analyze videos according to the weights you select 下載 訓練完的 weight檔案 執行 MaskDetection.py 內部可更改 輸入來源(鏡頭, 影片, 圖片) 以及輸出條件(人

Patrick_star 1 Nov 07, 2021