Official implementation of "Implicit Neural Representations with Periodic Activation Functions"

Related tags

Deep Learningsiren
Overview

Implicit Neural Representations with Periodic Activation Functions

Project Page | Paper | Data

Explore Siren in Colab

Vincent Sitzmann*, Julien N. P. Martel*, Alexander W. Bergman, David B. Lindell, Gordon Wetzstein
Stanford University, *denotes equal contribution

This is the official implementation of the paper "Implicit Neural Representations with Periodic Activation Functions".

siren_video

Google Colab

If you want to experiment with Siren, we have written a Colab. It's quite comprehensive and comes with a no-frills, drop-in implementation of SIREN. It doesn't require installing anything, and goes through the following experiments / SIREN properties:

  • Fitting an image
  • Fitting an audio signal
  • Solving Poisson's equation
  • Initialization scheme & distribution of activations
  • Distribution of activations is shift-invariant
  • Periodicity & behavior outside of the training range.

Tensorflow Playground

You can also play arond with a tiny SIREN interactively, directly in the browser, via the Tensorflow Playground here. Thanks to David Cato for implementing this!

Get started

If you want to reproduce all the results (including the baselines) shown in the paper, the videos, point clouds, and audio files can be found here.

You can then set up a conda environment with all dependencies like so:

conda env create -f environment.yml
conda activate siren

High-Level structure

The code is organized as follows:

  • dataio.py loads training and testing data.
  • training.py contains a generic training routine.
  • modules.py contains layers and full neural network modules.
  • meta_modules.py contains hypernetwork code.
  • utils.py contains utility functions, most promintently related to the writing of Tensorboard summaries.
  • diff_operators.py contains implementations of differential operators.
  • loss_functions.py contains loss functions for the different experiments.
  • make_figures.py contains helper functions to create the convergence videos shown in the video.
  • ./experiment_scripts/ contains scripts to reproduce experiments in the paper.

Reproducing experiments

The directory experiment_scripts contains one script per experiment in the paper.

To monitor progress, the training code writes tensorboard summaries into a "summaries"" subdirectory in the logging_root.

Image experiments

The image experiment can be reproduced with

python experiment_scripts/train_img.py --model_type=sine

The figures in the paper were made by extracting images from the tensorboard summaries. Example code how to do this can be found in the make_figures.py script.

Audio experiments

This github repository comes with both the "counting" and "bach" audio clips under ./data.

They can be trained with

python experiment_scipts/train_audio.py --model_type=sine --wav_path=<path_to_audio_file>

Video experiments

The "bikes" video sequence comes with scikit-video and need not be downloaded. The cat video can be downloaded with the link above.

To fit a model to a video, run

python experiment_scipts/train_video.py --model_type=sine --experiment_name bikes_video

Poisson experiments

For the poisson experiments, there are three separate scripts: One for reconstructing an image from its gradients (train_poisson_grad_img.py), from its laplacian (train_poisson_lapl_image.py), and to combine two images (train_poisson_gradcomp_img.py).

Some of the experiments were run using the BSD500 datast, which you can download here.

SDF Experiments

To fit a Signed Distance Function (SDF) with SIREN, you first need a pointcloud in .xyz format that includes surface normals. If you only have a mesh / ply file, this can be accomplished with the open-source tool Meshlab.

To reproduce our results, we provide both models of the Thai Statue from the 3D Stanford model repository and the living room used in our paper for download here.

To start training a SIREN, run:

python experiments_scripts/train_single_sdf.py --model_type=sine --point_cloud_path=<path_to_the_model_in_xyz_format> --batch_size=250000 --experiment_name=experiment_1

This will regularly save checkpoints in the directory specified by the rootpath in the script, in a subdirectory "experiment_1". The batch_size is typically adjusted to fit in the entire memory of your GPU. Our experiments show that with a 256, 3 hidden layer SIREN one can set the batch size between 230-250'000 for a NVidia GPU with 12GB memory.

To inspect a SDF fitted to a 3D point cloud, we now need to create a mesh from the zero-level set of the SDF. This is performed with another script that uses a marching cubes algorithm (adapted from the DeepSDF github repo) and creates the mesh saved in a .ply file format. It can be called with:

python experiments_scripts/test_single_sdf.py --checkpoint_path=<path_to_the_checkpoint_of_the_trained_model> --experiment_name=experiment_1_rec 

This will save the .ply file as "reconstruction.ply" in "experiment_1_rec" (be patient, the marching cube meshing step takes some time ;) ) In the event the machine you use for the reconstruction does not have enough RAM, running test_sdf script will likely freeze. If this is the case, please use the option --resolution=512 in the command line above (set to 1600 by default) that will reconstruct the mesh at a lower spatial resolution.

The .ply file can be visualized using a software such as Meshlab (a cross-platform visualizer and editor for 3D models).

Helmholtz and wave equation experiments

The helmholtz and wave equation experiments can be reproduced with the train_wave_equation.py and train_helmholtz.py scripts.

Torchmeta

We're using the excellent torchmeta to implement hypernetworks. We realized that there is a technical report, which we forgot to cite - it'll make it into the camera-ready version!

Citation

If you find our work useful in your research, please cite:

@inproceedings{sitzmann2019siren,
    author = {Sitzmann, Vincent
              and Martel, Julien N.P.
              and Bergman, Alexander W.
              and Lindell, David B.
              and Wetzstein, Gordon},
    title = {Implicit Neural Representations
              with Periodic Activation Functions},
    booktitle = {arXiv},
    year={2020}
}

Contact

If you have any questions, please feel free to email the authors.

Owner
Vincent Sitzmann
Incoming Assistant Professor @mit EECS. I'm researching neural scene representations - the way neural networks learn to represent information on our world.
Vincent Sitzmann
A fast Protein Chain / Ligand Extractor and organizer.

Are you tired of using visualization software, or full blown suites just to separate protein chains / ligands ? Are you tired of organizing the mess o

Amine Abdz 9 Nov 06, 2022
CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhancement

CBREN This is the Pytorch implementation for our IEEE TCSVT paper : CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhanceme

Zhao Hengrun 3 Nov 04, 2022
Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI

EmotionUI Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI. demo screenshot (with RealSense) required packages Python = 3.6 num

Yang Jiao 2 Dec 23, 2021
Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.

Dense Contrastive Learning for Self-Supervised Visual Pre-Training This project hosts the code for implementing the DenseCL algorithm for se

Xinlong Wang 491 Jan 03, 2023
A Learning-based Camera Calibration Toolbox

Learning-based Camera Calibration A Learning-based Camera Calibration Toolbox Paper The pdf file can be found here. @misc{zhang2022learningbased,

Eason 14 Dec 21, 2022
A Human-in-the-Loop workflow for creating HD images from text

A Human-in-the-Loop? workflow for creating HD images from text DALL·E Flow is an interactive workflow for generating high-definition images from text

Jina AI 2.5k Jan 02, 2023
Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Troyanskaya Laboratory 323 Jan 01, 2023
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
Predict multi paths to a moving person depending on his trajectory history.

Multi-future Trajectory Prediction The project is about using the Multiverse model to make possible multible-future trajectory prediction for a seen p

Said Gamal 1 Jan 18, 2022
PROJECT - Az Residential Real Estate Analysis

AZ RESIDENTIAL REAL ESTATE ANALYSIS -Decided on libraries to import. Includes pa

2 Jul 05, 2022
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
The source code for 'Noisy-Labeled NER with Confidence Estimation' accepted by NAACL 2021

Kun Liu*, Yao Fu*, Chuanqi Tan, Mosha Chen, Ningyu Zhang, Songfang Huang, Sheng Gao. Noisy-Labeled NER with Confidence Estimation. NAACL 2021. [arxiv]

30 Nov 12, 2022
OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model

Open-Source Toolbox for Infrastructures Probabilistic Deterioration Modelling OpenIPDM is a MATLAB open-source platform that stands for infrastructure

CIVML 0 Jan 20, 2022
Rotary Transformer

[中文|English] Rotary Transformer Rotary Transformer is an MLM pre-trained language model with rotary position embedding (RoPE). The RoPE is a relative

325 Jan 03, 2023
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization

Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization This repository contains the source code for the paper (link wi

Rakuten Group, Inc. 0 Nov 19, 2021
[ICLR 2021 Spotlight Oral] "Undistillable: Making A Nasty Teacher That CANNOT teach students", Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang

Undistillable: Making A Nasty Teacher That CANNOT teach students "Undistillable: Making A Nasty Teacher That CANNOT teach students" Haoyu Ma, Tianlong

VITA 71 Dec 28, 2022
Code for ECIR'20 paper Diagnosing BERT with Retrieval Heuristics

Bert Axioms This is the repository with the code for the Paper Diagnosing BERT with Retrieval Heuristics Required Data In order to run this code, you

Arthur Câmara 5 Jan 21, 2022
Pytorch port of Google Research's LEAF Audio paper

leaf-audio-pytorch Pytorch port of Google Research's LEAF Audio paper published at ICLR 2021. This port is not completely finished, but the Leaf() fro

Dennis Fedorishin 80 Oct 31, 2022
Julia package for multiway (inverse) covariance estimation.

TensorGraphicalModels TensorGraphicalModels.jl is a suite of Julia tools for estimating high-dimensional multiway (tensor-variate) covariance and inve

Wayne Wang 3 Sep 23, 2022